ADp
ADp

cative
cation

AD

D

How to obtain OpenT$S
exploiting the applica

Catlue

B query

batching by

(ve struc

'ure of g computation.

A'Word of Warning

A'Word of Warning

| Nad trouble explaining this stuf

l‘ Rob Norris @tpolecat
Sorry, | need to focus on something else right now. I'm sure someone can help

you work through it.

@ lonut G. Stan @igstan
No worries, | like banging my head against this wall actually :)

ae lonut G. Stan @igstan
Well, it doesn't have to return, it's an applicative, so its continuation can be

saved somewhere, right?

Fabio Labella @SystemFw
| can't parse that

Fabio Labella @SystemFw
I'm busy today

@ lonut G. Stan @igstan
No worries, you've helped a lot anyways.

Fabio Labella @SystemFw
I'll try to show actual code tonight or tomorrow (UK time)

Today's Roadmap

Today's Roadmap

. The Problem

Today's Roadmap

. The Problem

. OpenlSDB Overview — Time Series Data Storage

Today's Roadmap

. The Problem
. OpenlSDB Overview — Time Series Data Storage

- Business Use (ase — Time Series Data Aggregation

Today's Roadmap

. The Problem
. OpenlSDB Overview — Time Series Data Storage

- Business Use (ase — Time Series Data Aggregation

. The Solution

Today's Roadmap

. The Problem
. OpenlSDB Overview — Time Series Data Storage

- Business Use (ase — Time Series Data Aggregation
. The Solution

- Inspiration

Today's Roadmap

+ The Problem

. OpenlSDB Overview — Time Series Data Storage

- Business Use (ase — Time Series Data Aggregation
. The Solution

- Inspiration

. Intuitions — Functions, Monads & Applicatives

Today's Roadmap

+ The Problem

. OpenlSDB Overview — Time Series Data Storage

- Business Use (ase — Time Series Data Aggregation
. The Solution

- Inspiration

. Intuitions — Functions, Monads & Applicatives

. (ode

Today's Roadmap

+ The Problem

. OpenlSDB Overview — Time Series Data Storage

- Business Use (ase — Time Series Data Aggregation
. The Solution

- Inspiration

. Intuitions — Functions, Monads & Applicatives

- (ode

» Future Work

Jpenl>DB Overview

lime Series Data Storage

http POST 'localhost:4242/api/put' << EOF

[
{
"metric": "metric-a",
"timestamp": 1538092800,
"value": 10,
"tags": {
"t1": "v1",
"t2": "v2"
}
b,
{
"metric": "metric-b",
"timestamp": 1538092801,
"value": 20,
"tags": {
"t1": "v1",
"t2": "v2"
}
}
]

EOF

http POST 'localhost:4242/api/put' << EOF

[
{
"metric": "metric-a",
"timestamp": 1538092800,
"value": 10,
"tags": {
"t1": "v1",
"t2": "v2"
}
b,
{
"metric": "metric-b",
"timestamp": 1538092801,
"value": 20,
"tags": {
"t1": "v1",
"t2": "v2"
}
}
]

EOF

http POST 'localhost:4242/api/put' << EOF

[
{
"metric": "metric-a",
"timestamp": 1538092800,
"value": 10,
"tags": {
"t1": "v1",
"t2": "v2"
}
b,
{
"metric": "metric-b",
"timestamp": 1538092801,
"value": 20,
"tags": {
"t1": "v1",
"t2": "v2"
}
}
]

EOF

http POST 'localhost:4242/api/put' << EOF

[
{
"metric": "metric-a",
"timestamp": 1538092800,
"value": 10,
"tags": {
"t1": "v1",
"t2": "v2"
}
b,
{
"metric": "metric-b",
"timestamp": 1538092801,
"value": 20,
"tags": {
"t1": "v1",
"t2": "v2"
}
}
]

EOF

http POST 'localhost:4242/api/put' << EOF

[
{
"metric": "metric-a",
"timestamp": 1538092800,
"value": 10,
"tags": {
"t1": "v1",
"t2": "v2"
}
b,
{
"metric": "metric-b",
"timestamp": 1538092801,
"value": 20,
"tags": {
"t1": "v1",
"t2": "v2"
}
}
]

EOF

http POST 'localhost:4242/api/query’ << EOF

i
"start": "2018/05/01 00:10:00",

"end": "2018/05/01 00:10:05",

"timezone": "UTC",
"queries": [
{
"metric": "metric-a",
"aggregator": "none",
"tags": {}
b
{
"metric": "metric-b",
"aggregator": "none",
"tags": {}
}
]

EOF

e®e < > MO

localhost

E‘E’ OPENTSDEB

Graph Stats Logs Version

To [|Autoreload

(now),
2018/05/01-00:21:00

From

2018/05/01-00:09:00

metric-a metric-b +

WxH: 1220x645 ~ Global annotations

Axes Key Style

Metric: metric-a

['Rate(|Rate Ctr/ |Right Axis

Rate Ctr Max:

Tags ‘ ‘

Rate Ctr Reset:

Aggregator: sum B

['Downsample

avg ¢ 10m

none

Y Y2
Label
Format
Range [90:12(
Log scale @)

Cache hit (disk). 1200 points retrieved, 1200 points plotted in 17ms.
120

115 —

110

l:"l |

hn
|

;
{lu)ﬁﬂﬂ
"‘””M i “f i i
“i |WLMW'ij

n i Itu P ik 1‘{.“

105

[fl i
|I l

:\I‘ "'

100

i 1‘1;! ! l Lw \..

h.,

il
\W"

yi"'
\‘“

bl
ik

4]

I'll\

" !ﬂm*" !ra ..,‘.

)

l“

il hil

ik i
W"”hﬂh

ol

n|mm“

i
l'{"\”

{i

N il

i

hu

il

I

4“

i!|] L! W"I

11 (3!

...

i s 1I[N I\J

hl’li |J !

-'n!‘ "

SusIiness Use (ase

lime Series Data Aggregation

Business Use (ase

Business Use (ase

. We store historical data in OpenTSDB

Business Use (ase

. We store historical data in OpenTSDB

. Basis for end-of-month reports

Business Use (ase

. We store historical data in OpenTSDB
. Basis for end-of-month reports

. Past: everything computed at end of month from raw OpenTSDB data

Business Use (ase

. We store historical data in OpenTSDB

. Basis for end-of-month reports

. Past: everything computed at end of month from raw OpenTSDB data

. Now: pre-compute aggregations continuously at various
frequencies, e.g., 5 minutes, and use these for reporting

Business Use (ase

. We store historical data in OpenTSDB
. Basis for end-of-month reports
. Past: everything computed at end of month from raw OpenTSDB data

. Now: pre-compute aggregations continuously at various
frequencies, e.g., 5 minutes, and use these for reporting

. We call these aggregations roll-ups

Business Use (ase

. We store historical data in OpenTSDB
. Basis for end-of-month reports
. Past: everything computed at end of month from raw OpenTSDB data

. Now: pre-compute aggregations continuously at various
frequencies, e.g., 5 minutes, and use these for reporting

. We call these aggregations roll-ups

. Decreases time to generate reports

10

-UpS as

-UNCLIoNS

def rollup (metric: List[Datapoint]): Double

case class Datapoint (
timestamp: Instant,
value: Double,

def rollup (metric: List[Datapoint]): Double

case class Datapoint (
timestamp: Instant,
value: Double,

def rollup(
metricO: List[Datapoint],
metricl: List[Datapoint],

metricN: List[Datapoint],
) : Double

003l Uptimize Networ
Access

nspiration

GitHubGist All gists GitHub Newgist [~

}}: chris-taylor / I0Action.hs *Star 6 | YFork 1

Last active 2 years ago Report abuse

<> Code Revisions 2 Stars 6 Forks 1 Embed v | <script src="https://gist. E [= Download ZIP

Code for my blog post about pure I/O

IOAction.hs Raw

data IOAction a = Return a
| Put String (IOAction a)
| Get (String -> IOAction a)

Get Return
Put s (Return ())

get
put s

seqio :: IOAction a -> (a -> IOAction b) -> IOAction b
f a

Put s (seqio io f)

Get (\s -> seqio (g s) f)

seqio (Return a) f

seqio (Put s io) f

seqio (Get g) f

echo = get “seqio” put

hello = put "What is your name?" “seqio” _ ->
get “seqio” \name ->
put "What is your age?" “seqio” _ ->
get “seqio” \age ->
put ("Hello " ++ name ++ "!") “seqio” _ ->

put ("You are " ++ age ++ " years old")
hello2 = do put "What is your name?"

name <- get

put "What is your age?"

age <- get

https://gist.github.com/chris-taylor/4745921

IOAction.hs

data IOAction a = Return a
| Put String (IOAction a)
| Get (String -> IOAction a)

Get Return
Put s (Return ())

get

put s

seqio :: IOAction a -> (a -> IOAction b) -> IOAction b
seqio (Return a) f = f a
seqio (Put s io) f = Put s (seqgio io f)

seqio (Get g) f = Get (\s -> seqio (g s) f)

echo = get "seqio put

hello = put "What is your name?" “seqio” _ ->
get “seqio” \name ->
put "What is your age?" “seqio” _ ->
get "seqio” \age ->
put ("Hello " ++ name ++ "!") “seqio™ _ ->

put ("You are " ++ age ++ " years old")
hello2 = do put "What is your name?"

name <- get

put "What is your age?"

age <- get

https://gist.github.com/chris-taylor/4745921

A
=" stackoverflow Search...

What are free monads?

I've seen the term Free Monad pop up every now and then for some time, but everyone just seems
to use/discuss them without giving an explanation of what they are. So: what are free monads? (I'd

321 say I'm familiar with monads and the Haskell basics, but have only a very rough knowledge of
category theory.)

haskell monads free-monad Edit tags

166 share edit close flag edited May 22 '14 at 8:26 asked Nov 12 '12 at 21:53

fizruk](., David
‘ 1,585 ¢ 12 23 am 3,800 ©3 219 @ 31

11 A fairly good explanation is here haskellforall.com/2012/06/... — Roger Lindsjé Nov 12 "12 at 22:08 /'

18 @Roger that's kind of the page that brought me here. To me, that example defines a monad instance for a
type named "Free" and that's it. — David Nov 12 12 at 22:12

Apologies for the question but would anyone be able to distill what a free monad is to a c# programmer? |
don’t understand any of this Haskell mumbo — |--""--------- mmmt Aug 13 at 11:03

== ScalaWorld 2015

20-22 September, Lake District, UK

Move Over Free Monads: \"
Make Way for Free Applicatives |

— John de Goes

Sponsored by

gg&l{ga" .Typesafe @)BOLDRADIUS e o zalando
>

P o) 0:25/45:29

https://www.youtube.com/watch?v=H28QqxO7Ihc

Free Applicative Functors

Paolo Capriotti

Functional Programming Laboratory
University of Nottingham
pvc@cs.nott.ac.uk

Abstract

Applicative functors ([9]) are a generalisation of monads. Both
allow expressing effectful computations into an otherwise pure
language, like Haskell ([8]).

Applicative functors are to be preferred to monads when the struc-
ture of a computation is fixed a priori. That makes it possible to
perform certain kinds of static analysis on applicative values.

We define a notion of free applicative functor, prove that it satisfies
the appropriate laws, and that the construction is left adjoint to a
suitable forgetful functor.

We show how free applicative functors can be used to implement
embedded DSLs which can be statically analysed.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]|: Language Constructs and Features

General Terms Haskell, Free Applicative Functors

Keywords Applicative Functors, Parametricity, Adjoints

1. Introduction

Free monads in Haskell are a very well-known and practically used
construction. Given any endofunctor £, the free monad on f is given
by a simple inductive definition:

data Free f a

= Return a
| Free (f (Free f a))

The tvpical use case for this construction i1s creatine embedded

Ambrus Kaposi

Functional Programming Laboratory
University of Nottingham
auk@cs.nott.ac.uk

e We give two definitions of free applicative functor in Haskell
(section Q), and show that they are equivalent (section @.

e We prove that our definition is correct, in the sense that it really
is an applicative functor (section |6), and that it is “free” in a
precise sense (section]7).

e We present a number of examples where the use of free ap-
plicative functors helps make the code more elegant, removes
duplication or enables certain kinds of optimizations which are
not possible when using free monads. We describe the differ-
ences between expressivity of DSLs using free applicatives and
free monads (section 3).

e We compare our definition to other existing implementations of
the same idea (section|9).

This paper is aimed at programmers with a working knowledge
of Haskell. Familiarity with applicative functors is not required,
although it is helpful to understand the motivation behind this
work. We make use of category theoretical concepts to justify our
definition, but the Haskell code we present can also stand on its
own.

1.1 Applicative functors

Applicative functors (also called idioms) were first introduced in [9]
as a way to provide a lighter notation for monads. They have since
been used in a variety of different applications, including efficient
parsing (see section|1.4), regular expressions and bidirectional rout-
ing.

Free Applicative Functors

Paolo Capriotti

Functional Programming Laboratory
University of Nottingham
pvc@cs.nott.ac.uk

Abstract

Applicative functors ([9]) are a generalisation of monads. Both
allow expressing effectful computations into an otherwise pure
language, like Haskell ([8]).

Applicative functors are to be preferred to monads when the struc-
ture of a computation is fixed a priori. That makes it possible to
perform certain kinds of static analysis on applicative values.

We define a notion of free applicative functor, prove that it satisfies
the appropriate laws, and that the construction is left adjoint to a
suitable forgetful functor.

We show how free applicative functors can be used to implement
embedded DSLs which can be statically analysed.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]|: Language Constructs and Features

General Terms Haskell, Free Applicative Functors

Keywords Applicative Functors, Parametricity, Adjoints

1. Introduction

Free monads in Haskell are a very well-known and practically used
construction. Given any endofunctor £, the free monad on £ is given
by a simple inductive definition:

data Free f a
= Return a
| Free (f (Free f a))

The tvnical use casce for this construction is creatine embedded

Ambrus Kaposi

Functional Programming Laboratory
University of Nottingham
auk@cs.nott.ac.uk

e We give two definitions of free applicative functor in Haskell
(section Q), and show that they are equivalent (section @.

e We prove that our definition is correct, in the sense that it really
is an applicative functor (section |6), and that it is “free” in a
precise sense (section]7).

e We present a number of examples where the use of free ap-
plicative functors helps make the code more elegant, removes
duplication or enables certain kinds of optimizations which are
not possible when using free monads. We describe the differ-
ences between expressivity of DSLs using free applicatives and
free monads (section 3).

e We compare our definition to other existing implementations of
the same idea (section|9).

This paper is aimed at programmers with a working knowledge
of Haskell. Familiarity with applicative functors is not required,
although it is helpful to understand the motivation behind this
work. We make use of category theoretical concepts to justify our
definition, but the Haskell code we present can also stand on its
own.

1.1 Applicative functors

Applicative functors (also called idioms) were first introduced in [9]
as a way to provide a lighter notation for monads. They have since
been used in a variety of different applications, including efficient
parsing (see section|1.4), regular expressions and bidirectional rout-
ing.

Abstract

Applicative functors ([9]) are a generalisation of monads. Both
allow expressing effectful computations into an otherwise pure
language, like Haskell ([8]).

Applicative functors are to be preferred to monads when the struc-
ture of a computation is fixed a priori. That makes it possible to
perform certain kinds of static analysis on applicative values.

We define a notion of free applicative functor, prove that it satisfies
the appropriate laws, and that the construction is left adjoint to a
suitable forgetful functor.

We show how free applicative functors can be used to implement
embedded DSLs which can be statically analysed.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages|: Language Constructs and Features

General Terms Haskell, Free Applicative Functors

Keywords Applicative Functors, Parametricity, Adjoints

1. Introduction

Free monads in Haskell are a very well-known and practically used
construction. Given any endofunctor £, the free monad on £ is given
by a simple inductive definition:

data Free f a

— Return a
| Free (f (Free f a))

The tvpical use case for this construction i1s creatine embedded

e We give two d
(section 2), anc

e We prove that ¢
1s an applicati
precise sense (¢

e We present a 1
plicative functe
duplication or
not possible w
ences between
free monads (s

e We compare ot
the same 1dea (

This paper 1s aim
of Haskell. Famili
although 1t is hel
work. We make us
definition, but the
own.

1.1 Applicative |

Applicative functoi
as a way to provid
been used in a var
parsing (see sectio
Ing.

Abstract

Applicative functors ([9]) are a generalisation of monads. Both
allow expressing effectful computations into an otherwise pure
language, like Haskell ([8]).

Applicative functors are to be preferred to monads when the struc-
ture of a computation is fixed a priori. That makes it possible to
perform certain kinds of static analysis on applicative values.

We define a notion of free applicative functor, prove that it satisfies
the appropriate laws, and that the construction is left adjoint to a
suitable forgetful functor.

We show how free applicative functors can be used to implement
embedded DSLs which can be statically analysed.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages|: Language Constructs and Features

General Terms Haskell, Free Applicative Functors

Keywords Applicative Functors, Parametricity, Adjoints

1. Introduction

Free monads in Haskell are a very well-known and practically used
construction. Given any endofunctor £, the free monad on £ is given
by a simple inductive definition:

data Free f a

= Return a
| Free (f (Free f a))

The tvpical use case for this construction i1s creatine embedded

e We give two d
(section|2), anc

e We prove that
1s an applicati
precise sense (¢

e We present a 1
plicative funcitc
duplication or
not possible w
ences between
free monads (s

e We compare ot
the same 1dea (

This paper 1s aim
of Haskell. Famili
although it 1s hel
work. We make us
definition, but the
own.

1.1 Applicative |

Applicative functoi
as a way to provid
been used in a var
parsing (see sectiol
Ing.

SIM]

ar ic

03S: Haxl

There is no Fork: an Abstraction for Efficient,
Concurrent, and Concise Data Access

Simon Marlow Louis Brandy

Facebook
Idbrandy®@fb.com

Facebook
smarlow@fb.com

Abstract

We describe a new programming idiom for concurrency, based on
Applicative Functors, where concurrency is implicit in the Applica-
tive <*> operator. The result is that concurrent programs can be
written in a natural applicative style, and they retain a high degree
of clarity and modularity while executing with maximal concur-
rency. This idiom is particularly useful for programming against
external data sources, where the application code is written without
the use of explicit concurrency constructs, while the implementa-
tion is able to batch together multiple requests for data from the
same source, and fetch data from multiple sources concurrently.
Our abstraction uses a cache to ensure that multiple requests for
the same data return the same result, which frees the programmer
from having to arrange to fetch data only once, which in turn leads
to greater modularity.

While it is generally applicable, our technique was designed
with a particular application in mind: an internal service at Face-
book that identifies particular types of content and takes actions
based on it. Our application has a large body of business logic that
fetches data from several different external sources. The framework
described in this paper enables the business logic to execute ef-
ficiently by automatically fetching data concurrently; we present
some preliminary results.

Keywords Haskell; concurrency; applicative; monad; data-fetching;

distributed

1. Introduction

Jonathan Coens Jon Purdy
Facebook Facebook
jon.coens@fb.com jonp@fb.com

concise business logic, uncluttered by performance-related details.
In particular the programmer should not need to be concerned
with accessing external data efficiently. However, one particular
problem often arises that creates a tension between conciseness and
efficiency in this setting: accessing multiple remote data sources
efficiently requires concurrency, and that normally requires the
programmer to intervene and program the concurrency explicitly.

When the business logic is only concerned with reading data
from external sources and not writing, the programmer doesn’t
care about the order in which data accesses happen, since there
are no side-effects that could make the result different when the
order changes. So in this case the programmer would be entirely
happy with not having to specify either ordering or concurrency,
and letting the system perform data access in the most efficient way
possible. In this paper we present an embedded domain-specific
language (EDSL), written in Haskell, that facilitates this style of
programming, while automatically extracting and exploiting any
concurrency inherent in the program.

Our contributions can be summarised as follows:

e We present an Applicative abstraction that allows implicit
concurrency to be extracted from computations written with a
combination of Monad and Applicative. This is an extension
of the idea of concurrency monads [10], using Applicative <*>
as a way to introduce concurrency (Section 4). We then develop
the idea into an abstraction that supports concurrent access to
remote data (Section|5), and failure (Section 8).

e We show how to add a cache to the framework (Section :6).

T A vl v evv et rva ey th o wovoss oo o vt rtvissers ot Cat b el

There is no Fork: an Abstraction for Efficient,
Concurrent, and Concise Data Access

Simon Marlow Louis Brandy

Facebook
Idbrandy®@fb.com

Facebook
smarlow@fb.com

Abstract

We describe a new programming idiom for concurrency, based on
Applicative Functors, where concurrency is implicit in the Applica-
tive <*> operator. The result is that concurrent programs can be
written in a natural applicative style, and they retain a high degree
of clarity and modularity while executing with maximal concur-
rency. This idiom is particularly useful for programming against
external data sources, where the application code is written without
the use of explicit concurrency constructs, while the implementa-
tion is able to batch together multiple requests for data from the
same source, and fetch data from multiple sources concurrently.
Our abstraction uses a cache to ensure that multiple requests for
the same data return the same result, which frees the programmer
from having to arrange to fetch data only once, which in turn leads
to greater modularity.

While it is generally applicable, our technique was designed
with a particular application in mind: an internal service at Face-
book that identifies particular types of content and takes actions
based on it. Our application has a large body of business logic that
fetches data from several different external sources. The framework
described in this paper enables the business logic to execute ef-
ficiently by automatically fetching data concurrently; we present
some preliminary results.

Keywords Haskell; concurrency; applicative; monad; data-fetching;

distributed

1. Introduction

Jonathan Coens Jon Purdy
Facebook Facebook
jon.coens@fb.com jonp@fb.com

concise business logic, uncluttered by performance-related details.
In particular the programmer should not need to be concerned
with accessing external data efficiently. However, one particular
problem often arises that creates a tension between conciseness and
efficiency in this setting: accessing multiple remote data sources
efficiently requires concurrency, and that normally requires the
programmer to intervene and program the concurrency explicitly.

When the business logic is only concerned with reading data
from external sources and not writing, the programmer doesn’t
care about the order in which data accesses happen, since there
are no side-effects that could make the result different when the
order changes. So in this case the programmer would be entirely
happy with not having to specify either ordering or concurrency,
and letting the system perform data access in the most efficient way
possible. In this paper we present an embedded domain-specific
language (EDSL), written in Haskell, that facilitates this style of
programming, while automatically extracting and exploiting any
concurrency inherent in the program.

Our contributions can be summarised as follows:

e We present an Applicative abstraction that allows implicit
concurrency to be extracted from computations written with a
combination of Monad and Applicative. This is an extension
of the idea of concurrency monads [10], using Applicative <*>
as a way to introduce concurrency (Section 4). We then develop
the idea into an abstraction that supports concurrent access to
remote data (Section|5), and failure (Section 8).

e We show how to add a cache to the framework (Section :6).

L) PR R SR (PR AN (PR AR SR S

Abstract

We describe a new programming idiom for concurrency, based on
Applicative Functors, where concurrency is implicit in the Applica-
tive <*> operator. The result is that concurrent programs can be
written 1n a natural applicative style, and they retain a high degree
of clarity and modularity while executing with maximal concur-
rency. This idiom is particularly useful for programming against
external data sources, where the application code is written without
the use of explicit concurrency constructs, while the implementa-
tion is able to batch together multiple requests for data from the
same source, and fetch data from multiple sources concurrently.
Our abstraction uses a cache to ensure that multiple requests for
the same data return the same result, which frees the programmer
from having to arrange to fetch data only once, which in turn leads
to greater modularity.

While it i1s generally applicable, our technique was designed
with a particular application in mind: an internal service at Face-
book that identifies particular types of content and takes actions
based on it. Our application has a large body of business logic that
fetches data from several different external sources. The framework
described in this paper enables the business logic to execute ef-
ficiently by automatically fetching data concurrently; we present
some preliminary results.

Keywords Haskell; concurrency; applicative; monad; data-fetching;

distributed

1. Introduction

concise business log
In particular the pr
with accessing exte
problem often arises
efficiency in this sel
efficiently requires
programmer to inter:

When the busine
from external sourc
care about the orde:
are no side-effects t
order changes. So 11
happy with not havi
and letting the syster
possible. In this paj
language (EDSL), v
programming, while
concurrency inheren

Our contribution:

e We present an A
concurrency to b
combination of M
of the idea of cor
as a way to introc
the idea into an
remote data (Sec

e We show how t«

Applicative lets us perform global optimizations
on the Abstract Syntax Tree of an Embedded DSL.

NTUITIONS

-unctions, Monads & Applicatives

f(a)

def examplel[A, B](f: A => B, a: A): B =
f(a)

def examplel[A, B](f: A => B, a: A): B =
f(a)

def examplel[F[_]: Applicative, A, B](f: A => B, a: A): F[B] = %
val ff = Applicative[F].pure(f)
val fa = Applicative[F].pure(a)
ff.ap(fa)

5

def examplel[A, B](f: A => B, a: A): B =
f(a)

def examplel[F[_]: Applicative, A, B](f: A => B, a: A): F[B] = %
val ff = Applicative[F].pure(f)
val fa = Applicative[F].pure(a)
ff.ap(fa)

5

def example3[F[_]: Applicative, A, B](f: F[A => B], a: F[A]): F[B] =
f.ap(a)

def examplel[A, B](f: A => B, a: A): B =
f.apply(a)

def examplel[F[_]: Applicative, A, B](f: A => B, a: A): F[B] = %
val ff = Applicative[F].pure(f)
val fa = Applicative[F].pure(a)
ff.ap(fa)

5

def example3[F[_]: Applicative, A, B](f: F[A => B], a: F[A]): F[B] =
f.ap(a)

Applicative

L ets us embed function-like DSLs into our programs.

Jata and Effect
Jependencies

Combine N things

Y Yes—p»| Use Semigroup

Same type? Yes—p»

NO—p Use Monoid

No

* YeS—p» Use Apply

Obtained
(ndependently?,

No—| Use Applicative

No > Use Monad

Jnctons: 1

Possible Side-Effects
Without Data-Dependencies

// Potential side-effects, but we don't know.
def foo(): String = ?27?7?
def bar(): String = 277

// Potential side-effects, but we don't know.
def foo(): String = ?27?7?
def bar(): String = 277

// No data dependency between function calls.

val a = foo()
val b = bar()

L

POSS|

)

NCTIoNsS: 2

e Side-Effects

With Data-Dependencies

// Potential side-effects, but we don't know.
def foo(): String = ?27?7?
def bar(a: String): String = 2?7

// Potential side-effects, but we don't know.
def foo(): String = ?27?7?
def bar(a: String): String = 2?7

// Data-dependency between functions calls.

val a = foo()
val b = bar(a)

Wit
Wit

-unctions: 3

10UL

10U L

Side-Effects
Data-Dependencies

// Effectful functlions; encoded 1n sighature.
def foo(): Task[String] = 27?7
def bar(): Task[String] = 27?7

// Effectful functlions; encoded 1n sighature.
def foo(): Task[String] = 27?7
def bar(): Task[String] = 27?7

// No data dependency between function calls.

val a = foo()
val b = bar()

// Effectful functlions; encoded 1n sighature.
def foo(): Task[String] = 27?7
def bar(): Task[String] = 27?7

// No data dependency between function calls.

val a = foo()
val b = bar()
val c = a.flatMap(_ => b) // sequential

// Effectful functlions; encoded 1n sighature.
def foo(): Task[String] = 27?7
def bar(): Task[String] = 27?7

// No data dependency between function calls.
val a = foo()

val b = bar()

val c = a.flatMap(_ => b) // sequential

val d = (a, b).mapN((a, b)) => ...)

c.unsafeRunSync()

Wit
Wit

-unctions: 4

Nout Side-Effi

ACTS

N Data-Depe

ndencies

// Effectful functlions; encoded 1n sighature.
def foo(): IO0O[String] = 277
def bar(a: String): IO[String] = 2?7

// Effectful functlions; encoded 1n sighature.
def foo(): IO0O[String] = 277
def bar(a: String): IO[String] = 2?7

// Data-dependency between functions calls.
val ¢ = foo().flatMap(a => bar(a))
c.unsafeRunSync()

T1dSTIDACR

Applicative lets us embed function-like DSLS into
OUr Programs.

Applicative lets us perform global optimizations
on the Abstract Syntax Tree of an EDSL.

dea: come up with an EDS

data fetching and constral

interface.

R0l1-Ups are

' to model time serie

N Its usage to an A

-UNCLIoNS

Jphcahve

Then, statically analyze the EDSL to batch and deduplicate

Ssued queries before maring the actual network calls.

// Independent computations

val resultAB
val resultAC

rollupAB(metricA(), metricB())
rollupAC(metricA(), metricC())

// Independent computations
val mA =

val resultAB
val resultAC

rollupAB(metricA(), metricB())
rollupAC(metricA(), metricC())

// Optimize: common subexpression elimination
val mA = metricA()

val resultAB = rollupAB(mA, metricB())

val resultAC = rollupAC(mA, metricC())

WIKIPEDIA Q Search Wikipedia

Common subexpression elimination

XA Y 4/

In compiler theory, common subexpression elimination (CSE) is a compiler optimization that
searches for instances of identical expressions (i.e., they all evaluate to the same value), and analyzes
whether it is worthwhile replacing them with a single variable holding the computed value.

Contents Vv

~ Example 4

In the following code:

a=>b*c+ g;

d=Db * c * e;
it may be worth transforming the code to:

tmp = b * c;
a = tmp + g;
d = tmp * e;

if the cost of storing and retrieving tmp is less than the cost of calculating b * ¢ an extra time.

| et's Write an
Uptimizing

-U5L Compi

Cl

Joservations

Semantically-parallel Applicative instances don't bode
well with Monad instances. It a type is a monadic, a lawful
Applicative instance has to be sequential.

This is why (ats exposes a Parallel type-class, inspired by
Puredcript, which allows client code to choose between
semantically-sequential and semantically-parallel Applicative
instances.

-uture Wor

-uture WorR

Static Analysis on Arrow Computations

Call for Presentations

onut.g.stan(@gmail.com

mailto:ionut.g.stan@gmail.com?subject=Prezentare%20Bucharest%20FP

Juestions!

1al]

2N

