
An
Applicative
Application

An Applicative Application
How to obtain OpenTSDB query batching by
exploiting the applicative structure of a computation.

A Word of Warning

A Word of Warning
I had trouble explaining this stuff

Today's Roadmap

Today's Roadmap
• The Problem

Today's Roadmap
• The Problem

• OpenTSDB Overview — Time Series Data Storage

Today's Roadmap
• The Problem

• OpenTSDB Overview — Time Series Data Storage

• Business Use Case — Time Series Data Aggregation

Today's Roadmap
• The Problem

• OpenTSDB Overview — Time Series Data Storage

• Business Use Case — Time Series Data Aggregation

• The Solution

Today's Roadmap
• The Problem

• OpenTSDB Overview — Time Series Data Storage

• Business Use Case — Time Series Data Aggregation

• The Solution

• Inspiration

Today's Roadmap
• The Problem

• OpenTSDB Overview — Time Series Data Storage

• Business Use Case — Time Series Data Aggregation

• The Solution

• Inspiration

• Intuitions — Functions, Monads & Applicatives

Today's Roadmap
• The Problem

• OpenTSDB Overview — Time Series Data Storage

• Business Use Case — Time Series Data Aggregation

• The Solution

• Inspiration

• Intuitions — Functions, Monads & Applicatives

• Code

Today's Roadmap
• The Problem

• OpenTSDB Overview — Time Series Data Storage

• Business Use Case — Time Series Data Aggregation

• The Solution

• Inspiration

• Intuitions — Functions, Monads & Applicatives

• Code

• Future Work

OpenTSDB Overview
Time Series Data Storage

http POST 'localhost:4242/api/put' << EOF
[
 {
 "metric": "metric-a",
 "timestamp": 1538092800,
 "value": 10,
 "tags": {
 "t1": "v1",
 "t2": "v2"
 }
 },
 {
 "metric": "metric-b",
 "timestamp": 1538092801,
 "value": 20,
 "tags": {
 "t1": "v1",
 "t2": "v2"
 }
 }
]
EOF

http POST 'localhost:4242/api/put' << EOF
[
 {
 "metric": "metric-a",
 "timestamp": 1538092800,
 "value": 10,
 "tags": {
 "t1": "v1",
 "t2": "v2"
 }
 },
 {
 "metric": "metric-b",
 "timestamp": 1538092801,
 "value": 20,
 "tags": {
 "t1": "v1",
 "t2": "v2"
 }
 }
]
EOF

http POST 'localhost:4242/api/put' << EOF
[
 {
 "metric": "metric-a",
 "timestamp": 1538092800,
 "value": 10,
 "tags": {
 "t1": "v1",
 "t2": "v2"
 }
 },
 {
 "metric": "metric-b",
 "timestamp": 1538092801,
 "value": 20,
 "tags": {
 "t1": "v1",
 "t2": "v2"
 }
 }
]
EOF

http POST 'localhost:4242/api/put' << EOF
[
 {
 "metric": "metric-a",
 "timestamp": 1538092800,
 "value": 10,
 "tags": {
 "t1": "v1",
 "t2": "v2"
 }
 },
 {
 "metric": "metric-b",
 "timestamp": 1538092801,
 "value": 20,
 "tags": {
 "t1": "v1",
 "t2": "v2"
 }
 }
]
EOF

http POST 'localhost:4242/api/put' << EOF
[
 {
 "metric": "metric-a",
 "timestamp": 1538092800,
 "value": 10,
 "tags": {
 "t1": "v1",
 "t2": "v2"
 }
 },
 {
 "metric": "metric-b",
 "timestamp": 1538092801,
 "value": 20,
 "tags": {
 "t1": "v1",
 "t2": "v2"
 }
 }
]
EOF

http POST 'localhost:4242/api/query' << EOF
{
 "start": "2018/05/01 00:10:00",
 "end": "2018/05/01 00:10:05",
 "timezone": "UTC",
 "queries": [
 {
 "metric": "metric-a",
 "aggregator": "none",
 "tags": {}
 },
 {
 "metric": "metric-b",
 "aggregator": "none",
 "tags": {}
 }
]
}
EOF

Business Use Case
Time Series Data Aggregation

Business Use Case

Business Use Case
• We store historical data in OpenTSDB

Business Use Case
• We store historical data in OpenTSDB

• Basis for end-of-month reports

Business Use Case
• We store historical data in OpenTSDB

• Basis for end-of-month reports

• Past: everything computed at end of month from raw OpenTSDB data

Business Use Case
• We store historical data in OpenTSDB

• Basis for end-of-month reports

• Past: everything computed at end of month from raw OpenTSDB data

• Now: pre-compute aggregations continuously at various
frequencies, e.g., 5 minutes, and use these for reporting

Business Use Case
• We store historical data in OpenTSDB

• Basis for end-of-month reports

• Past: everything computed at end of month from raw OpenTSDB data

• Now: pre-compute aggregations continuously at various
frequencies, e.g., 5 minutes, and use these for reporting

• We call these aggregations roll-ups

Business Use Case
• We store historical data in OpenTSDB

• Basis for end-of-month reports

• Past: everything computed at end of month from raw OpenTSDB data

• Now: pre-compute aggregations continuously at various
frequencies, e.g., 5 minutes, and use these for reporting

• We call these aggregations roll-ups

• Decreases time to generate reports

Roll-Ups as Functions

def rollup(metric: List[Datapoint]): Double

case class Datapoint(
 timestamp: Instant,
 value: Double,
)

def rollup(metric: List[Datapoint]): Double

case class Datapoint(
 timestamp: Instant,
 value: Double,
)

def rollup(
 metric0: List[Datapoint],
 metric1: List[Datapoint],
 ...
 metricN: List[Datapoint],
): Double

Goal: Optimize Network
Access

Inspiration

https://gist.github.com/chris-taylor/4745921

https://gist.github.com/chris-taylor/4745921

https://www.youtube.com/watch?v=H28QqxO7Ihc

Similar Ideas: Haxl

Applicative lets us perform global optimizations
on the Abstract Syntax Tree of an Embedded DSL.

Intuitions
Functions, Monads & Applicatives

 f(a)

def example1[A, B](f: A => B, a: A): B =
 f(a)

def example1[A, B](f: A => B, a: A): B =
 f(a)

def example2[F[_]: Applicative, A, B](f: A => B, a: A): F[B] = {
 val ff = Applicative[F].pure(f)
 val fa = Applicative[F].pure(a)
 ff.ap(fa)
}

def example1[A, B](f: A => B, a: A): B =
 f(a)

def example2[F[_]: Applicative, A, B](f: A => B, a: A): F[B] = {
 val ff = Applicative[F].pure(f)
 val fa = Applicative[F].pure(a)
 ff.ap(fa)
}

def example3[F[_]: Applicative, A, B](f: F[A => B], a: F[A]): F[B] =
 f.ap(a)

def example1[A, B](f: A => B, a: A): B =
 f.apply(a)

def example2[F[_]: Applicative, A, B](f: A => B, a: A): F[B] = {
 val ff = Applicative[F].pure(f)
 val fa = Applicative[F].pure(a)
 ff.ap(fa)
}

def example3[F[_]: Applicative, A, B](f: F[A => B], a: F[A]): F[B] =
 f.ap(a)

Applicative
Lets us embed function-like DSLs into our programs.

Data and Effect
Dependencies

Functions: 1
Possible Side-Effects
Without Data-Dependencies

// Potential side-effects, but we don't know.
def foo(): String = ???
def bar(): String = ???

// Potential side-effects, but we don't know.
def foo(): String = ???
def bar(): String = ???

// No data dependency between function calls.
val a = foo()
val b = bar()

Functions: 2
Possible Side-Effects
With Data-Dependencies

// Potential side-effects, but we don't know.
def foo(): String = ???
def bar(a: String): String = ???

// Potential side-effects, but we don't know.
def foo(): String = ???
def bar(a: String): String = ???

// Data-dependency between functions calls.
val a = foo()
val b = bar(a)

Functions: 3
Without Side-Effects
Without Data-Dependencies

// Effectful functions; encoded in signature.
def foo(): Task[String] = ???
def bar(): Task[String] = ???

// Effectful functions; encoded in signature.
def foo(): Task[String] = ???
def bar(): Task[String] = ???

// No data dependency between function calls.
val a = foo()
val b = bar()

// Effectful functions; encoded in signature.
def foo(): Task[String] = ???
def bar(): Task[String] = ???

// No data dependency between function calls.
val a = foo()
val b = bar()
val c = a.flatMap(_ => b) // sequential

// Effectful functions; encoded in signature.
def foo(): Task[String] = ???
def bar(): Task[String] = ???

// No data dependency between function calls.
val a = foo()
val b = bar()
val c = a.flatMap(_ => b) // sequential
val d = (a, b).mapN((a, b) => ...)

c.unsafeRunSync()

Functions: 4
Without Side-Effects
With Data-Dependencies

// Effectful functions; encoded in signature.
def foo(): IO[String] = ???
def bar(a: String): IO[String] = ???

// Effectful functions; encoded in signature.
def foo(): IO[String] = ???
def bar(a: String): IO[String] = ???

// Data-dependency between functions calls.
val c = foo().flatMap(a => bar(a))
c.unsafeRunSync()

Flashback
Applicative lets us embed function-like DSLs into
our programs.

Applicative lets us perform global optimizations
on the Abstract Syntax Tree of an EDSL.

Roll-Ups are Functions
Idea: come up with an EDSL to model time series
data fetching and constrain its usage to an Applicative
interface.

Then, statically analyze the EDSL to batch and deduplicate
issued queries before making the actual network calls.

// Independent computations

val resultAB = rollupAB(metricA(), metricB())
val resultAC = rollupAC(metricA(), metricC())

// Independent computations
val mA =
val resultAB = rollupAB(metricA(), metricB())
val resultAC = rollupAC(metricA(), metricC())

// Optimize: common subexpression elimination
val mA = metricA()
val resultAB = rollupAB(mA, metricB())
val resultAC = rollupAC(mA, metricC())

Let's Write an
Optimizing
EDSL Compiler

Observations
Semantically-parallel Applicative instances don't bode
well with Monad instances. If a type is a monadic, a lawful
Applicative instance has to be sequential.

This is why Cats exposes a Parallel type-class, inspired by
PureScript, which allows client code to choose between
semantically-sequential and semantically-parallel Applicative
instances.

Future Work

Future Work
Static Analysis on Arrow Computations

Call for Presentations
ionut.g.stan@gmail.com

mailto:ionut.g.stan@gmail.com?subject=Prezentare%20Bucharest%20FP

Questions!

Thanks!

