
Functional Programming

Ionut G. Stan - OpenAgile 2010

Functional Programming

what
why
how

Functional Programming

what
why
how

What is FP

a programming style

What is FP

a programming style
conceptually derived from lambda calculus (1930s)

What is FP

a programming style
conceptually derived from lambda calculus (1930s)
not procedural programming

What is FP

a programming style
conceptually derived from lambda calculus (1930s)
not procedural programming
functions as in mathematical functions

What is FP

a programming style
conceptually derived from lambda calculus (1930s)
not procedural programming
functions as in mathematical functions
math function: input completely determines the output

Imperative Programming

programming: telling a computer what to do

Imperative Programming

programming: telling a computer what to do
imperative languages are leaky abstractions

Imperative Programming

programming: telling a computer what to do
imperative languages are leaky abstractions
also called von Neumann languages

Imperative Programming

programming: telling a computer what to do
imperative languages are leaky abstractions
also called von Neumann languages
von Neumann architecture is about modifying the state of
the computer

von Neumann architecture

Imperative Programming

programming: telling a computer what to do
imperative languages are leaky abstractions
also called von Neumann languages
von Neumann architecture is about modifying the state of
the computer
computation model in imperative languages reflects von
Neumann architecture

Imperative Programming

programming: telling a computer what to do
imperative languages are leaky abstractions
also called von Neumann languages
von Neumann architecture is about modifying the state of
the computer
computation model in imperative languages reflects von
Neumann architecture
imperative programming: what and how to do

What is FP

a programming style
conceptually derived from lambda calculus (1930s)
not procedural programming
functions as in mathematical functions
trying to plug the abstraction leak

What is FP

a programming style
conceptually derived from lambda calculus (1930s)
not procedural programming
functions as in mathematical functions
trying to plug the abstraction leak
tell the computer what to do, not how

What is FP

a programming style
conceptually derived from lambda calculus (1930s)
not procedural programming
functions as in mathematical functions
trying to plug the abstraction leak
tell the computer what to do, not how
mutations not allowed (no variables, just identifiers)

What is FP

a programming style
conceptually derived from lambda calculus (1930s)
not procedural programming
functions as in mathematical functions
trying to plug the abstraction leak
tell the computer what to do, not how
mutations not allowed (no variables, just identifiers)
no statements, just expressions (if/then/else is expression)

What is FP

a programming style
conceptually derived from lambda calculus (1930s)
not procedural programming
functions as in mathematical functions
trying to plug the abstraction leak
tell the computer what to do, not how
mutations not allowed (no variables, just identifiers)
no statements, just expressions (if/then/else is expression)
functions are deterministic and side-effect free

What is FP

a programming style
conceptually derived from lambda calculus (1930s)
not procedural programming
functions as in mathematical functions
trying to plug the abstraction leak
tell the computer what to do, not how
mutations not allowed (no variables, just identifiers)
no statements, just expressions (if/then/else is expression)
functions are deterministic and side-effect free
functions are all we need to model computation

What is FP

a programming style
conceptually derived from lambda calculus (1930s)
not procedural programming
functions as in mathematical functions
trying to plug the abstraction leak
tell the computer what to do, not how
mutations not allowed (no variables, just identifiers)
no statements, just expressions (if/then/else is expression)
functions are deterministic and side-effect free
functions are all we need to model computation
execution order is not guaranteed

Functional Programming

what
why
how

Why FP

easier to reason about programs

Why FP

easier to reason about programs

heisenbugs

Why FP

easier to reason about programs

heisenbugs
race conditions

Why FP

easier to reason about programs

heisenbugs
race conditions
off by one errors

Why FP

easier to reason about programs

heisenbugs
race conditions
off by one errors
objects trashing another object's internal state

Why FP

easier to reason about programs

Why FP

easier to reason about programs
easier to parallelize

Why FP

easier to reason about programs
easier to parallelize
program correctness proving

Why FP

easier to reason about programs
easier to parallelize
program correctness proving
composability results in greater and easier reuse

Just for fun - reuse in OO languages

"You wanted a banana but what you got was a gorilla
holding the banana and the entire jungle."

Joe Armstrong, creator of Erlang

Why FP

easier to reason about programs
easier to parallelize
program correctness proving
composability results in greater and easier reuse
try out new perspectives

Functional Programming

what
why
how

Functional Programming

what
why
how (even in imperative languages)

How to FP

avoid side-effects/mutation as much as possible

How to FP

avoid side-effects/mutation as much as possible
at least keep them as private as possible in OO

How to FP

avoid side-effects/mutation as much as possible
at least keep them as private as possible in OO
treat variables as immutable (constants/final)

How to FP

avoid side-effects/mutation as much as possible
at least keep them as private as possible in OO
treat variables as immutable (constants/final)
return values (output) based on params (input) only

How to FP

avoid side-effects/mutation as much as possible
at least keep them as private as possible in OO
treat variables as immutable (constants/final)
return values (output) based on params (input) only
play with a functional language

Functional Programming

what
why
how
example

Example

Example

Example

"Conventional programming languages are growing ever more
enormous, but not stronger. Inherent defects at the most basic
level cause them to be both fat and weak: their primitive word-
at-a-time style of programming inherited from their common
ancestor -- the von Neumann computer, their close coupling of
semantics to state transitions, their division of programming into
a world of expressions and a world of statements, their inability
to effectively use powerful combining forms for building new
programs from existing ones, and their lack of useful
mathematical properties for reasoning about programs."

John Backus, known for Fortran, Algol and BNF

Thank You

 igstan.ro | ionut.g.stan@gmail.com | @igstan

Questions?

 igstan.ro | ionut.g.stan@gmail.com | @igstan

