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1. Integers: 1, 23, 456, etc.

2. Identifiers (only letters): inc, cond, a, etc.

3. Booleans: true and false

4. Single-argument anonymous functions: fn a => a

5. Function application: inc 42

6. If expressions: if cond then t else f

7. Addition and subtraction: a + b, a - b 

8. Parenthesized expressions: (a + b)

Vehicle Language: µML



9. Let blocks/expressions:  
 
  let 
   val name = ... 
 in 
   name 
 end

Vehicle Language: µML



Small Example

let 
  val inc = 
    fn a => a + 1 
in 
  inc 42 
end
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Lexing
Compiler

(fn a => a) 2

Parser

Lexer
Tokens

(  fn  a  =>  a  )  2
Parser

Source Language

• Expects a stream of characters or bytes 
• Groups them into semantically atomic units: tokens!
• These are the words of the language!
• What are the rules for grouping them, though?
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• Grouping can be thought of as "split by space" 

• Why not exactly that, though? Consider:

Lexing

val sum = 1 + 2 
!
val sum=1+2 
!
val str = "spaces matter here"
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• We need rules for grouping characters into tokens

• These rules form the lexical grammar

• Can be defined using regular expressions

• Conducive to easy and efficient implementations

• Using a RegExp library

• By hand isn't hard either, just a little cumbersome

• Lexer generators: Lex, Flex, Alex, ANTLR, etc.

• Lexing is what you need for syntax definition files

Lexing
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• The lexer recognizes valid words in the language

• Not all combinations of valid words form valid phrases in 
a language

• Syntactically correct: val a = 1

• Syntactically incorrect: val val val

• We must define the structure of phrases

• A syntactical grammar achieves that
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• Regular expressions are not powerful enough

• REs can't recognize nested structures

• Because they use a finite amount of memory

• Nesting needs a stack to remember the upper 
structures you're traversing

• Syntactical grammars express nesting using 
recursion

Parsing





It's not weird-looking Unicode characters 
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expressions in ML

• double 1 + 2  =  (double 1) + 2

• double 1 + 2  ≠  double (1 + 2)

• A rule's alternatives don't encode precedence

• Grammars convey this by chaining rules in order of precedence

• Doesn't scale with many infix operators

• Use a special parser for that, e.g., the Shunting Yard algorithm
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• Two styles:

• Top-down parsing: builds tree from the root

• Bottom-up parsing: builds tree from the leaves

• Top-down is easy to write by hand

• Bottom-up is not, but it's used by generators

• Parser generators: YACC, ANTLR, Bison, etc.
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• The simplest known parsing strategy; amenable to hand-coding

• Builds the tree top to bottom, from root to leaves, hence Descent

• Parallels the structure of the grammar

• Main idea: each grammar production becomes a function

• Recursion in the grammar translates to recursion in the code, hence 
Recursive

• Recursion is the main difference compared to regexes; it needs a stack

• Very popular, e.g., Clang uses it for C/C++/Obj-C

• Parser combinators are an abstraction over this idea

Recursive Descent Parser
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• The current grammar has a problem

• But, it's only a problem for our current parsing strategy; 
others can easily cope with it

• The problem is that some rules are left-recursive, i.e., the 
rule itself appears as the first symbol on the left

• This is problematic for a recursive descent parser because 
the structure of function calls follow the structure of rule 
definitions

• That means infinite recursion in the parser, which isn't good

Removing Left-Recursion
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expr = infix 
     | fn var => expr 
     | if expr then expr else expr 
!
infix = app 
      | infix oper infix



Removing Left-Recursion
expr = infix 
     | fn var => expr 
     | if expr then expr else expr 
!
infix = app 
      | app oper infix



Removing Left-Recursion
expr = infix 
     | fn var => expr 
     | if expr then expr else expr 
!
infix = app 
      | app oper infix 
      | app oper app oper infix



Removing Left-Recursion
expr = infix 
     | fn var => expr 
     | if expr then expr else expr 
!
infix = app 
      | app oper infix 
      | app oper app oper infix 
      | app oper app oper app oper infix



Removing Left-Recursion
expr = infix 
     | fn var => expr 
     | if expr then expr else expr 
!
infix = app 
      | app oper infix 
      | app oper app oper infix 
      | app oper app oper app oper infix 
        ...



Removing Left-Recursion
expr = infix 
     | fn var => expr 
     | if expr then expr else expr 
!
infix = app 
      | app (oper infix) 
      | app (oper app (oper infix)) 
      | app (oper app (oper app (oper infix))) 
        ...



Removing Left-Recursion
expr = infix 
     | fn var => expr 
     | if expr then expr else expr 
!
infix = app { oper infix }



Removing Left-Recursion
expr = infix 
     | fn var => expr 
     | if expr then expr else expr 
!
infix = app { oper infix } 
!
app = atomic { app } 
!
12 14 13 
(12 14) 13 
!
atomic = int 
       | var 
       | bool 
       | ( expr ) 
       | let val var = expr in expr end

bool = true | false 
oper = + | -



github.com / igstan / itake-2016

https://github.com/igstan/itake-2016


• Write a lexer for JSON 

• Write a recursive descent parser for JSON 

• It's way easier than today's vehicle language 

• I promise! 

• Specification: json.org

Homework

http://json.org/


Thank You!



Questions!


