L et's Write a Parser

Ionut G. Stan — 1 — May 2016

About Me

About Me

e Software Developer at Eloguentix

http://eloquentix.com/
http://bucharestfp.ro/
http://igstan.ro/

About Me

e Software Developer at Eloguentix

* | work mostly with Scala

http://eloquentix.com/
http://bucharestfp.ro/
http://igstan.ro/

About Me

e Software Developer at Eloguentix

* | work mostly with Scala

e | like FP, programming languages, compilers

http://eloquentix.com/
http://bucharestfp.ro/
http://igstan.ro/

About Me

Software Developer at Eloguentix

| work mostly with Scala
| like FP, programming languages, compilers

| started the Bucharest FP meet-up group

http://eloquentix.com/
http://bucharestfp.ro/
http://igstan.ro/

About Me

Software Developer at Eloguentix

| work mostly with Scala
| like FP, programming languages, compilers

| started the Bucharest FP meet-up group

| occasionally blog on Igstan.ro

http://eloquentix.com/
http://bucharestfp.ro/
http://igstan.ro/

Plan

Plan

* Vehicle Language: uML

Plan

* Vehicle Language: uML

 Compilers Overview

Plan

* Vehicle Language: uML
 Compilers Overview

e Parsing: Intuitions and Live Coding

Vehicle Language: pML

Vehicle Language: pML

1. Integers: 1, 23, 456, etc.

Vehicle Language: pML

1. Integers: 1, 23, 456, etc.

2. |ldentifiers (only letters): 1nc, cond, a, etc.

Vehicle Language: pML

1. Integers: 1, 23, 456, etc.
2. |ldentifiers (only letters): 1nc, cond, a, etc.

3. Booleans: true and false

=~ W I

Vehicle Language: pML

. Integers: 1, 23, 456, etc.

|dentifiers (only letters): 1nc, cond, a, etc.

Booleans: true and false

Single-argument anonymous functions: fn a => a

o K~ W

Vehicle Language: pML

. Integers: 1, 23, 456, etc.

|dentifiers (only letters): 1nc, cond, a, etc.
Booleans: true and false
Single-argument anonymous functions: fn a => a

Function application: 1nc 42

2 A S A

Vehicle Language: pML

. Integers: 1, 23, 456, etc.

|dentifiers (only letters): 1nc, cond, a, etc.
Booleans: true and false

Single-argument anonymous functions: fn a => a
Function application: 1nc 42

If expressions: 1f cond then t else f

~N o O A W

Vehicle Language: pML

. Integers: 1, 23, 456, etc.

|dentifiers (only letters): 1nc, cond, a, etc.
Booleans: true and false

Single-argument anonymous functions: fn a => a
Function application: 1nc 42

If expressions: 1f cond then t else f

Addition and subtraction:a + b,a - b

© N o O A~ W I

Vehicle Language: pML

. Integers: 1, 23, 456, etc.

|dentifiers (only letters): 1nc, cond, a, etc.
Booleans: true and false

Single-argument anonymous functions: fn a => a
Function application: 1nc 42

If expressions: 1f cond then t else f
Addition and subtraction:a + b,a - b

Parenthesized expressions: (a + b)

Vehicle Language: pML

9. Let blocks/expressions:

let

val name = ...
1n

name
end

Small Example

let
val 1nc =
fna =>a + 1
1n
inc 42
end

Compilers Overview

Compilers Overview

—> | Compiler | —m@™

Compilers Overview

ource La e .
—> | Compiler | —m@@™

Compilers Overview

&

Compiler

Target Language

Compilers Overview

Source Language

————————————
(fn a => a) 2

Compiler

Target Language
—————————————

Compilers Overview

Source Language

——————
(fn a => a) 2

Compller

Target Language
el

(function(a){return a})(2)

Compilers Overview

lage

Parsing

Compiler

—> | Parser

Func

lage

Abstract Ssyntax Tree

Compiler

—> | Parser

Abstract Syntax Tree (AST)

APP

Func

lage

Code Generation

Compiler

—> | Parser

Abstract Syntax Tree (AST)

APP

CodeGen

Func

Many Intermediate Phases

Compiler

—> | Parser CodeGen

- |

lage

—> | Parser

) 2

Type Checking

Compiler

‘lAST

Type Checker

CodeGen

|

Typed AST
——

Func

Last Year's Talk

CodeGen

Compiler
lage

» | Parser
2

‘ 1
Last Year §

(
i

h
(

Typed AST

| Type Checker 1

. o B j

o V V = —— =P = _4

(Func

loday's lalk

Compiler

CodeGen

(Func

Type Checker —

Parsing

Compiler

Parser

lage

lage

| exing + Parsing

Compiler

Parser

—m> | Lexer

Tokens

e
(fn a => a) 2

Parser

Lexing

Compiler

Parser

lage Tokens

—1> Lexer —— > | Parser

Lexing

Compiler

Parser

lage Tokens

—1> Lexer ———— > | Parser

Lexing

Compiler

Parser

lage Tokens

—1> Lexer ————————————————— > | Parser

Lexing

Compiler

Parser

lage Tokens

—1> Lexer ———————————————> | Parser

Lexing

Compiler

Parser

lage Tokens

—1> Lexer ————— > | Parser

Lexing

Compiler

Parser

lage Tokens

—1> Lexer —————— > | Parser

Lexing

Compiler

Parser

lage Tokens

—1> Lexer ————— > | Parser

lage

Lexing

Compiler

Parser

—m> | Lexer

Tokens

—_——

(

fn

a => 'a) 2

Parser

l,AST

APP

RN

FUN INT

N |

a

VAR o
|

a

lage

Parsing

Compiler

Parser

—m> | Lexer

Tokens

(i fn a =>1a) gz}

Parser

l,AST

APP

e [T
N , | i
a VAR | 2

| s .

a

lage

1> Lexer — e r—r—m e

Parsing

Compiler

Parser

Tokens

(: fn la => {E})2

Parser

l,AST

APP

RN

FUN

/M

a

VAR
|

a

INT

|
2

lage

Parsing

Compiler

Parser

—m> | Lexer

Tokens

—_———

(i fn EE] => a) 2

Parser

l,AST

APP

Parsing

Compiler
Parser
lage |_ Tokens P
—_— _ _
- exer BM@H@B § dalrser
lAST
APP
W FUN | INT
y N |
| a VARj 9
. |

lage

Parsing

Compiler

Parser

—> | Lexer

Tokens

Yl

Parser

lage

Lexing

Compiler

Parser

—m> | Lexer

Tokens

—_——

(

fn

a => 'a) 2

Parser

l,AST

APP

RN

FUN INT

N |

a

VAR o
|

a

Lexing

Lexing

Compiler

Parser

lage Tokens
—T> Lexer —_———— > | Parser
2 (i fnila => a) 2

* EXpects a stream of characters or bytes
* (Groups them into semantically atomic units: tokens
* [hese are the words of the language

 What are the rules for grouping them, though?

Lexing

* (Grouping can be thought of as "split by space”

Lexing

* (Grouping can be thought of as "split by space”

 Why not exactly that, though”? Consider:

Lexing

* (Grouping can be thought of as "split by space”

 Why not exactly that, though”? Consider:

val sum = 1 + 2
val sum=1+2

val str = "spaces matter here”

Lexing

« We need rules for grouping characters into tokens

Lexing

« We need rules for grouping characters into tokens

e These rules form the lexical grammar

Lexing

« We need rules for grouping characters into tokens
e These rules form the lexical grammar

* Can be defined using regular expressions

Lexing

We need rules for grouping characters into tokens
These rules form the lexical grammar
Can be defined using regular expressions

Conducive to easy and efficient implementations

Lexing

We need rules for grouping characters into tokens
These rules form the lexical grammar

Can be defined using regular expressions
Conducive to easy and efficient implementations

e Using a Regkxp library

Lexing

We need rules for grouping characters into tokens
These rules form the lexical grammar

Can be defined using regular expressions
Conducive to easy and efficient implementations
 Using a RegExp library

By hand isn't hard either, just a little cumbersome

Lexing

We need rules for grouping characters into tokens
These rules form the lexical grammar

Can be defined using regular expressions
Conducive to easy and efficient implementations
 Using a RegExp library

By hand isn't hard either, just a little cumbersome

o Lexer generators: Lex, Flex, Alex, ANTLR, etc.

Lexing

We need rules for grouping characters into tokens
These rules form the lexical grammar

Can be defined using regular expressions
Conducive to easy and efficient implementations
 Using a RegExp library

By hand isn't hard either, just a little cumbersome
o Lexer generators: Lex, Flex, Alex, ANTLR, etc.

Lexing is what you need for syntax definition files

UML — Lexical Grammar

integers

keywords

UML — Lexical Grammar

integers 0|[1-9][0-9]%

keywords

UML — Lexical Grammar

integers 0|[1-9][0-9]%

keywords

UML — Lexical Grammar

integers 0|[1-9][0-9]%

keywords

UML — Lexical Grammar

integers 0|[1-9][0-9]%

keywords 1f, then, else, let, val, 1n, end, fn, true, false

Code

Parsing

Parsing

Compiler

Parser
lage Tokens
—T> Lexer —_———— > | Parser
2 (i fnila => a) 2

l,AST

APP

RN

FUN INT
N |
a VAR 2

|

a

Parsing

* The lexer recognizes valid words in the language

Parsing

* The lexer recognizes valid words in the language

* Not all combinations of valid words form valid phrases in
a language

Parsing

* The lexer recognizes valid words in the language

* Not all combinations of valid words form valid phrases in
a language

e Syntactically correct: val a = 1

Parsing

The lexer recognizes valid words In the language

Not all combinations of valid words form valid phrases Iin
a language

Syntactically correct: val a = 1

Syntactically incorrect: val val val

Parsing

The lexer recognizes valid words In the language

Not all combinations of valid words form valid phrases Iin
a language

Syntactically correct: val a = 1
Syntactically incorrect: val val val

We must define the structure of phrases

Parsing

The lexer recognizes valid words In the language

Not all combinations of valid words form valid phrases Iin
a language

Syntactically correct: val a = 1
Syntactically incorrect: val val val

We must define the structure of phrases

A syntactical grammar achieves that

Parsing

* Regular expressions are not powerful enough

Parsing

* Regular expressions are not powerful enough

 REs can't recognize nested structures

Parsing

* Regular expressions are not powerful enough
 REs can't recognize nested structures

 Because they use a finite amount of memory

Parsing

Regular expressions are not powerful enough
REs can't recognize nested structures
Because they use a finite amount of memory

Nesting needs a stack to remember the upper
structures you're traversing

Parsing

Regular expressions are not powerful enough
REs can't recognize nested structures
Because they use a finite amount of memory

Nesting needs a stack to remember the upper
structures you're traversing

Syntactical grammars express nesting using
recursion

4427

You can't parse [X][HTML with regex. Because HTML can't be parsed by regex. Regex is not a tool
that can be used to correctly parse HTML. As | have answered in HTML-and-regex questions here
so many times before, the use of regex will not allow you to consume HTML. Regular expressions
are a tool that is insufficiently sophisticated to understand the constructs employed by HTML.
HTML is not a regular language and hence cannot be parsed by regular expressions. Regex
queries are not equipped to break down HTML into its meaningful parts. so many times but it is not
getting to me. Even enhanced irregular regular expressions as used by Perl are not up to the task
of parsing HTML. You will never make me crack. HTML is a language of sufficient complexity that it
cannot be parsed by regular expressions. Even Jon Skeet cannot parse HTML using regular
expressions. Every time you attempt to parse HTML with regular expressions, the unholy child
weeps the blood of virgins, and Russian hackers pwn your webapp. Parsing HTML with regex
summons tainted souls into the realm of the living. HTML and regex go together like love, marriage,
and ritual infanticide. The <center> cannot hold it is too late. The force of regex and HTML together
in the same conceptual space will destroy your mind like so much watery putty. If you parse HTML
with regex you are giving in to Them and their blasphemous ways which doom us all to inhuman
toil for the One whose Name cannot be expressed in the Basic Multilingual Plane, he comes.
HTML-plus-regexp will liquify the nerves of the sentient whilst you observe, your psyche withering
in the onslaught of horror. Reg'éx-based HTML parsers are the cancer that is killing StackOverflow
it is too late it is too late we cannot be saved the trangession of a child ensures regex will consume
all living tissue (except for HTML which it cannot, as previously prophesied) dear lord help us how
can anyone survive this scourge using regex to parse HTML has doomed humanity to an eternity of
dread torture and security holes using regex as a tool to process HTML establishes a breach
between this world and the dread realm of corrupt entities (like SGML entities, but more corrupt) a
mere glimpse of the world of regex parsers for HTML will instantly transport a programmer’s
consciousness into a world of ceaseless screaming, he comes;-the pestilentslithy regex-infection
will devour your HTML parser, application and existence for all time like Visual Bgsic only worse
he comes he comes do not fight he comgs, his unholy radiancé destroying all enlightenment,
HTML tags leaking from your eyes’1lke liquid pain, the song of regular expressqen—paF&HgLWHI
extinguish the voices of mortal man from the gphere | can see it can you see_it lt it is beautiful the
f 1nal snuf fing of the lies of Man ALL IS LOST ALL IS LOST the pony he comes he comes-he

s the ichor ped'néeates all MY FACE MYEACE Ob @;p.d nlpg!O NOOQOOO NO stop the an
-_gj‘s .a.Fe not real ZAL GO ISTONy THE PONY HJE@ME§

T ;

Have you tried using an XML parser instead?

4427

C <

You can't parse [X]HTML with regex. Because HTML can't be parsed by regex. Regex is not a tool
that can be used to correctly parse HTML. As | have answered in HTML-and-regex questions here
so many times before, the use of regex will not allow you to consume HTML. Regular expressions
are a tool that is insufficiently sophisticated to understand the constructs employed by HTML.
HTML is not a regular language and hence cannot be parsed by regular expressions. Regex
queries are not equipped to break down HTML into its meaningful parts. so many times but it is not
getting to me. Even enhanced irregular regular expressions as used by Perl are not up to the task
of parsing HTML. You will never make me crack. HTML is a language of sufficient complexity that it

cannot be parsed by regular expressions. Even Jon Skeet cannot parse HTML usmg regular e — \

expressions. Every time you attempt to parse HTML with regular expressyr o
weeps the blood of V|rg|ns and Russian hackers pwn g ====="" |
summons tainted souls intadhs

N0 -
=

e < THIOTE 7rrupt) a
3 y ransport a programmer’s
creamlng, he comes—theupestrlent—shthy regex-infection

o eTaTyOUr HT L parser application and existence for all time like Visual Bgsm only worse

he comes he comes do not fight he comgs, his unholy radiancé destroying all enlightenment,
HTML tags leakjng from your eyes’1lke liquid pain, the song of regular express+en—pa|tsmgwnl
extinguish the voices of mortal man from the gphere | can see it can you see_it lt it is beautiful the
f 1nal snuf fing of the lies of Man ALL IS LOST ALL IS LOST the pony he comes he comes-he
W the ichor pq{ngeates all MY FACE MYEACE Ob h]p.d n'pﬂp NOOQOOO NO stop the an

V w A

S
g .2.Fe not rédl ZAL GO ISTON-y THE PONY I-ER_L&ME§

Have you tried using an XML parser instead?

Syntactical Grammar

UML — Syntactical Grammar

UML — Syntactical Grammar

= int

Here, blue symbols represent tokens coming from the lexer, not keywords.

UML — Syntactical Grammar

= o
-]
—t

Here, blue symbols represent tokens coming from the lexer, not keywords.

UML — Syntactical Grammar

— — i
< -
Y
~

Here, blue symbols represent tokens coming from the lexer, not keywords.

UML — Syntactical Grammar

= true | false

— — i
< -
Y
~

Here, blue symbols represent tokens coming from the lexer, not keywords.

UML — Syntactical Grammar

= 1int = true | false
var

Here, blue symbols represent tokens coming from the lexer, not keywords.

UML — Syntactical Grammar

= 1int = true | false
var

()

fn var =>

Here, blue symbols represent tokens coming from the lexer, not keywords.

UML — Syntactical Grammar

= int = true | false
var
()
fn var =>
if then else

Here, blue symbols represent tokens coming from the lexer, not keywords.

UML — Syntactical Grammar

= int = true | false
var
()
fn var =>
1f then else
let val var = 1n end

Here, blue symbols represent tokens coming from the lexer, not keywords.

UML — Syntactical Grammar

= int = true | false
var
()
fn var =>
1f then else
let val var = 1n end

Here, blue symbols represent tokens coming from the lexer, not keywords.

UML — Syntactical Grammar

= int = true | false
var =+ | -
()
fn var =>
1f then else
let val var = 1n end

Here, blue symbols represent tokens coming from the lexer, not keywords.

UML — Syntactical Grammar

= int = true | false
var =+ | -
()
fn var =>
1f then else
let val var = 1n end

Here, blue symbols represent tokens coming from the lexer, not keywords.

Introducing Precedence

e Function application has higher precedence over infix
expressions in ML

Introducing Precedence

e Function application has higher precedence over infix
expressions in ML

e double 1 +2 = (double 1) + 2

Introducing Precedence

e Function application has higher precedence over infix
expressions in ML

e double 1 +2 = (double 1) + 2

 double 1 +2 # double (1 + 2)

Introducing Precedence

Function application has higher precedence over infix
expressions in ML

double 1 + 2 = (double 1) + 2
double 1 + 2 # double (1 + 2)

A rule's alternatives don't encode precedence

Introducing Precedence

Function application has higher precedence over infix
expressions in ML

double 1 + 2 = (double 1) + 2
double 1 + 2 # double (1 + 2)
A rule's alternatives don't encode precedence

Grammars convey this by chaining rules in order of precedence

Introducing Precedence

Function application has higher precedence over infix
expressions in ML

double 1 + 2 = (double 1) + 2

double 1 + 2 # double (1 + 2)

A rule's alternatives don't encode precedence

Grammars convey this by chaining rules in order of precedence

Doesn't scale with many infix operators

Introducing Precedence

Function application has higher precedence over infix
expressions in ML

double 1 + 2 = (double 1) + 2

double 1 + 2 # double (1 + 2)

A rule's alternatives don't encode precedence

Grammars convey this by chaining rules in order of precedence
Doesn't scale with many infix operators

Use a special parser for that, e.qg., the Shunting Yard algorithm

Introducing Precedence

- int = true | false
var = + | -
()
fn var =>
if then else

let val var = 1in end

Introducing Precedence

= true | false

=+ | -

= 1nt
var

()

let val var = in end

Introducing Precedence

= true | false

=+ | -

= 1nt
var

()

let val var = in end

Introducing Precedence

= true | false

=+ | -

= 1nt
var

()

let val var = in end

Introducing Precedence

= 1nfix boo'l
| fn var => expr oper
| 1f expr then expr else expr

expr true | false

vl -

infix = app
| infix oper infix

app = atomic
app atomic

atomic = 1nt
var
bool

(expr)
let val var = expr 1n expr end

Parsing Strategies

Parsing Strategies

* [wo styles:

Parsing Strategies

* [wo styles:

e Jop-down parsing: builds tree from the root

Parsing Strategies

* [wo styles:
e Jop-down parsing: builds tree from the root

e Bottom-up parsing: builds tree from the leaves

Parsing Strategies

* [wo styles:

e Jop-down parsing: builds tree from the root
e Bottom-up parsing: builds tree from the leaves

* Jop-down is easy to write by hand

Parsing Strategies

* [wo styles:

e Jop-down parsing: builds tree from the root
e Bottom-up parsing: builds tree from the leaves
* Jop-down is easy to write by hand

* Bottom-up is not, but it's used by generators

Parsing Strategies

Two styles:

e Jop-down parsing: builds tree from the root

e Bottom-up parsing: builds tree from the leaves
Top-down Is easy to write by hand

Bottom-up Is not, but it's used by generators

Parser generators: YACC, ANTLR, Bison, etc.

Recursive Descent Parser

* The simplest known parsing strategy; amenable to hand-coding

Recursive Descent Parser

* The simplest known parsing strategy; amenable to hand-coding

« Builds the tree top to bottom, from root to leaves, hence Descent

Recursive Descent Parser

* The simplest known parsing strategy; amenable to hand-coding
« Builds the tree top to bottom, from root to leaves, hence Descent

« Parallels the structure of the grammar

Recursive Descent Parser

The simplest known parsing strategy; amenable to hand-coding
Builds the tree top to bottom, from root to leaves, hence Descent
Parallels the structure of the grammar

Main idea: each grammar production becomes a function

Recursive Descent Parser

The simplest known parsing strategy; amenable to hand-coding
Builds the tree top to bottom, from root to leaves, hence Descent
Parallels the structure of the grammar

Main idea: each grammar production becomes a function

Recursion in the grammar translates to recursion in the code, hence
Recursive

Recursive Descent Parser

The simplest known parsing strategy; amenable to hand-coding
Builds the tree top to bottom, from root to leaves, hence Descent
Parallels the structure of the grammar

Main idea: each grammar production becomes a function

Recursion in the grammar translates to recursion in the code, hence
Recursive

Recursion is the main difference compared to regexes; it needs a stack

Recursive Descent Parser

The simplest known parsing strategy; amenable to hand-coding
Builds the tree top to bottom, from root to leaves, hence Descent
Parallels the structure of the grammar

Main idea: each grammar production becomes a function

Recursion in the grammar translates to recursion in the code, hence
Recursive

Recursion is the main difference compared to regexes; it needs a stack

Very popular, e.g., Clang uses it for C/C++/Obj-C

Recursive Descent Parser

The simplest known parsing strategy; amenable to hand-coding
Builds the tree top to bottom, from root to leaves, hence Descent
Parallels the structure of the grammar

Main idea: each grammar production becomes a function

Recursion in the grammar translates to recursion in the code, hence
Recursive

Recursion is the main difference compared to regexes; it needs a stack
Very popular, e.g., Clang uses it for C/C++/Obj-C

Parser combinators are an abstraction over this idea

Code

Removing Left-Recursion

* [he current grammar has a problem

Removing Left-Recursion

* [he current grammar has a problem

e But, it's only a problem for our current parsing strategy;
others can easily cope with it

Removing Left-Recursion

* [he current grammar has a problem

e But, it's only a problem for our current parsing strategy;
others can easily cope with it

* [he problem is that some rules are left-recursive, I.e., the
rule itself appears as the first symbol on the left

Removing Left-Recursion

The current grammar has a problem

But, it's only a problem for our current parsing strategy;
others can easily cope with it

The problem is that some rules are left-recursive, I.e., the
rule itself appears as the first symbol on the left

This is problematic for a recursive descent parser because
the structure of function calls follow the structure of rule
definitions

Removing Left-Recursion

The current grammar has a problem

But, it's only a problem for our current parsing strategy;
others can easily cope with it

The problem is that some rules are left-recursive, I.e., the
rule itself appears as the first symbol on the left

This is problematic for a recursive descent parser because
the structure of function calls follow the structure of rule
definitions

That means infinite recursion in the parser, which isn't good

| eft-Recursive Grammar

= 1nfix boo'l
| fn var => expr oper
| 1f expr then expr else expr

expr true | false

vl -

infix = app
| infix oper infix

app = atomic
app atomic

atomic = 1nt
var
bool

(expr)
let val var = expr 1n expr end

| eft-Recursive Grammar

= 1nfix boo'l
| fn var => expr oper
| if expr then expr else expr

true | false

rl -

infixjoper infix

{app}=,atomic

appjatomic

atomic = 1nt

var

bool

(expr)

let val var = expr 1n expr end

| eft-Recursive Grammar

| eft-Recursive Grammar

| eft-Recursive Grammar

| eft-Recursive Grammar

Removing Left-Recursion

true | false

vl -

= 1nfix boo'l
| fn var => expr oper
| 1f expr then expr else expr

expr

infix = app
| infix oper infix

app = atomic { app }

atomic = 1nt
var
bool

(expr)
let val var = expr 1n expr end

Removing Left-Recursion

Removing Left-Recursion

Removing Left-Recursion

Removing Left-Recursion

Removing Left-Recursion

Removing Left-Recursion

Removing Left-Recursion

Removing Left-Recursion

true | false

vl -

= 1nfix boo'l
| fn var => expr oper
| 1f expr then expr else expr

expr

infix = app { oper infix }
app = atomic { app }

12 14 13
(12 14) 13

atomic = 1nt
var
bool

(expr)
let val var = expr 1n expr end

github.com / igstan / itake-2016

https://github.com/igstan/itake-2016

Homework

Write a lexer for JSON

Write a recursive descent parser for JSON
lt's way easler than today's vehicle language
| promise!

Specification: json.org

http://json.org/

Thank You!

Questions!

