
Let's Write a Parser
Ionuț G. Stan — I T.A.K.E. — May 2016

About Me

• Software Developer at Eloquentix

About Me

http://eloquentix.com/
http://bucharestfp.ro/
http://igstan.ro/

• Software Developer at Eloquentix

• I work mostly with Scala

About Me

http://eloquentix.com/
http://bucharestfp.ro/
http://igstan.ro/

• Software Developer at Eloquentix

• I work mostly with Scala

• I like FP, programming languages, compilers

About Me

http://eloquentix.com/
http://bucharestfp.ro/
http://igstan.ro/

• Software Developer at Eloquentix

• I work mostly with Scala

• I like FP, programming languages, compilers

• I started the Bucharest FP meet-up group

About Me

http://eloquentix.com/
http://bucharestfp.ro/
http://igstan.ro/

• Software Developer at Eloquentix

• I work mostly with Scala

• I like FP, programming languages, compilers

• I started the Bucharest FP meet-up group

• I occasionally blog on igstan.ro

About Me

http://eloquentix.com/
http://bucharestfp.ro/
http://igstan.ro/

Plan

• Vehicle Language: µML

Plan

• Vehicle Language: µML
• Compilers Overview

Plan

• Vehicle Language: µML
• Compilers Overview
• Parsing: Intuitions and Live Coding

Plan

Vehicle Language: µML

1. Integers: 1, 23, 456, etc.

Vehicle Language: µML

1. Integers: 1, 23, 456, etc.

2. Identifiers (only letters): inc, cond, a, etc.

Vehicle Language: µML

1. Integers: 1, 23, 456, etc.

2. Identifiers (only letters): inc, cond, a, etc.

3. Booleans: true and false

Vehicle Language: µML

1. Integers: 1, 23, 456, etc.

2. Identifiers (only letters): inc, cond, a, etc.

3. Booleans: true and false

4. Single-argument anonymous functions: fn a => a

Vehicle Language: µML

1. Integers: 1, 23, 456, etc.

2. Identifiers (only letters): inc, cond, a, etc.

3. Booleans: true and false

4. Single-argument anonymous functions: fn a => a

5. Function application: inc 42

Vehicle Language: µML

1. Integers: 1, 23, 456, etc.

2. Identifiers (only letters): inc, cond, a, etc.

3. Booleans: true and false

4. Single-argument anonymous functions: fn a => a

5. Function application: inc 42

6. If expressions: if cond then t else f

Vehicle Language: µML

1. Integers: 1, 23, 456, etc.

2. Identifiers (only letters): inc, cond, a, etc.

3. Booleans: true and false

4. Single-argument anonymous functions: fn a => a

5. Function application: inc 42

6. If expressions: if cond then t else f

7. Addition and subtraction: a + b, a - b

Vehicle Language: µML

1. Integers: 1, 23, 456, etc.

2. Identifiers (only letters): inc, cond, a, etc.

3. Booleans: true and false

4. Single-argument anonymous functions: fn a => a

5. Function application: inc 42

6. If expressions: if cond then t else f

7. Addition and subtraction: a + b, a - b

8. Parenthesized expressions: (a + b)

Vehicle Language: µML

9. Let blocks/expressions:  
 
 let 
 val name = ... 
 in 
 name 
 end

Vehicle Language: µML

Small Example

let
 val inc =
 fn a => a + 1
in
 inc 42
end

Compilers Overview

Compiler

Compilers Overview

Compiler

Compilers Overview

Source Language

Target Language
Compiler

Compilers Overview

Source Language

Target Language
Compiler

(fn a => a) 2

Compilers Overview

Source Language

Target Language
Compiler

(fn a => a) 2 (function(a){return a})(2)

Compilers Overview

Source Language

Compilers Overview

Source Language Target Language

Compiler

(fn a => a) 2 (function(a){return a})(2)

Parsing

Target Language

Compiler

(fn a => a) 2
Parser

Source Language

(function(a){return a})(2)

Abstract Syntax Tree

Target Language

Compiler

(fn a => a) 2
Parser

APP

FUN

a VAR

a

INT

2

Abstract Syntax Tree (AST)Source Language

(function(a){return a})(2)

Code Generation

Target Language

Compiler

(fn a => a) 2
Parser CodeGen

APP

FUN

a VAR

a

INT

2

Abstract Syntax Tree (AST)Source Language

(function(a){return a})(2)

Many Intermediate Phases

Source Code Target Language

Compiler

(fn a => a) 2
Parser CodeGen

...

AST

(function(a){return a})(2)

Type Checking

Target Language

Compiler

(fn a => a) 2
Parser CodeGen

Type Checker

AST

Typed AST
...

Source Language

(function(a){return a})(2)

Last Year's Talk

Target Language

Compiler

(fn a => a) 2
Parser CodeGen

Type Checker

AST

Typed AST

Last Year

...

Source Language

(function(a){return a})(2)

Today's Talk

Target Language

Compiler

(fn a => a) 2
Parser CodeGen

Type Checker

AST

Typed AST

Today

...

Source Language

(function(a){return a})(2)

Parsing
Compiler

(fn a => a) 2

Parser

Source Language

Lexing + Parsing
Compiler

(fn a => a) 2

Parser

Lexer
Tokens

(fn a => a) 2
Parser

Source Language

Lexing
Compiler

(fn a => a) 2

Parser

Lexer
Tokens

(fn a => a) 2
Parser

Source Language

Lexing
Compiler

(fn a => a) 2

Parser

Lexer
Tokens

(fn a => a) 2
Parser

Source Language

Lexing
Compiler

(fn a => a) 2

Parser

Lexer
Tokens

(fn a => a) 2
Parser

Source Language

Lexing
Compiler

(fn a => a) 2

Parser

Lexer
Tokens

(fn a => a) 2
Parser

Source Language

Lexing
Compiler

(fn a => a) 2

Parser

Lexer
Tokens

(fn a => a) 2
Parser

Source Language

Lexing
Compiler

(fn a => a) 2

Parser

Lexer
Tokens

(fn a => a) 2
Parser

Source Language

Lexing
Compiler

(fn a => a) 2

Parser

Lexer
Tokens

(fn a => a) 2
Parser

Source Language

Lexing
Compiler

(fn a => a) 2

Parser

Lexer
Tokens

(fn a => a) 2
Parser

APP

FUN

a VAR

a

INT

2

AST

Source Language

Parsing
Compiler

(fn a => a) 2

Parser

Lexer
Tokens

(fn a => a) 2
Parser

APP

FUN

a VAR

a

INT

2

AST

Source Language

Parsing
Compiler

(fn a => a) 2

Parser

Lexer
Tokens

(fn a => a) 2
Parser

APP

FUN

a VAR

a

INT

2

AST

Source Language

Parsing
Compiler

(fn a => a) 2

Parser

Lexer
Tokens

(fn a => a) 2
Parser

APP

FUN

a VAR

a

INT

2

AST

Source Language

Parsing
Compiler

(fn a => a) 2

Parser

Lexer
Tokens

(fn a => a) 2
Parser

APP

FUN

a VAR

a

INT

2

AST

Source Language

Parsing
Compiler

(fn a => a) 2

Parser

Lexer
Tokens

(fn a => a) 2
Parser

APP

FUN

a VAR

a

INT

2

AST

Source Language

Lexing
Compiler

(fn a => a) 2

Parser

Lexer
Tokens

(fn a => a) 2
Parser

APP

FUN

a VAR

a

INT

2

AST

Source Language

Lexing

Lexing
Compiler

(fn a => a) 2

Parser

Lexer
Tokens

(fn a => a) 2
Parser

Source Language

• Expects a stream of characters or bytes
• Groups them into semantically atomic units: tokens!
• These are the words of the language!
• What are the rules for grouping them, though?

• Grouping can be thought of as "split by space"

Lexing

• Grouping can be thought of as "split by space"

• Why not exactly that, though? Consider:

Lexing

• Grouping can be thought of as "split by space"

• Why not exactly that, though? Consider:

Lexing

val sum = 1 + 2
!
val sum=1+2
!
val str = "spaces matter here"

• We need rules for grouping characters into tokens

Lexing

• We need rules for grouping characters into tokens

• These rules form the lexical grammar

Lexing

• We need rules for grouping characters into tokens

• These rules form the lexical grammar

• Can be defined using regular expressions

Lexing

• We need rules for grouping characters into tokens

• These rules form the lexical grammar

• Can be defined using regular expressions

• Conducive to easy and efficient implementations

Lexing

• We need rules for grouping characters into tokens

• These rules form the lexical grammar

• Can be defined using regular expressions

• Conducive to easy and efficient implementations

• Using a RegExp library

Lexing

• We need rules for grouping characters into tokens

• These rules form the lexical grammar

• Can be defined using regular expressions

• Conducive to easy and efficient implementations

• Using a RegExp library

• By hand isn't hard either, just a little cumbersome

Lexing

• We need rules for grouping characters into tokens

• These rules form the lexical grammar

• Can be defined using regular expressions

• Conducive to easy and efficient implementations

• Using a RegExp library

• By hand isn't hard either, just a little cumbersome

• Lexer generators: Lex, Flex, Alex, ANTLR, etc.

Lexing

• We need rules for grouping characters into tokens

• These rules form the lexical grammar

• Can be defined using regular expressions

• Conducive to easy and efficient implementations

• Using a RegExp library

• By hand isn't hard either, just a little cumbersome

• Lexer generators: Lex, Flex, Alex, ANTLR, etc.

• Lexing is what you need for syntax definition files

Lexing

µML — Lexical Grammar

integers 0|[1-9][0-9]*

identifiers [a-zA-Z]+

symbols (,), +, -, =, =>

keywords if, then, else, let, val, in, end, fn, true, false

integers 0|[1-9][0-9]*

identifiers [a-zA-Z]+

symbols (,), +, -, =, =>

keywords if, then, else, let, val, in, end, fn, true, false

µML — Lexical Grammar

integers 0|[1-9][0-9]*

identifiers [a-zA-Z]+

symbols (,), +, -, =, =>

keywords if, then, else, let, val, in, end, fn, true, false

µML — Lexical Grammar

integers 0|[1-9][0-9]*

identifiers [a-zA-Z]+

symbols (,), +, -, =, =>

keywords if, then, else, let, val, in, end, fn, true, false

µML — Lexical Grammar

integers 0|[1-9][0-9]*

identifiers [a-zA-Z]+

symbols (,), +, -, =, =>

keywords if, then, else, let, val, in, end, fn, true, false

µML — Lexical Grammar

Code

Parsing

Parsing
Compiler

(fn a => a) 2

Parser

Lexer
Tokens

(fn a => a) 2
Parser

APP

FUN

a VAR

a

INT

2

AST

Source Language

• The lexer recognizes valid words in the language

Parsing

• The lexer recognizes valid words in the language

• Not all combinations of valid words form valid phrases in
a language

Parsing

• The lexer recognizes valid words in the language

• Not all combinations of valid words form valid phrases in
a language

• Syntactically correct: val a = 1

Parsing

• The lexer recognizes valid words in the language

• Not all combinations of valid words form valid phrases in
a language

• Syntactically correct: val a = 1

• Syntactically incorrect: val val val

Parsing

• The lexer recognizes valid words in the language

• Not all combinations of valid words form valid phrases in
a language

• Syntactically correct: val a = 1

• Syntactically incorrect: val val val

• We must define the structure of phrases

Parsing

• The lexer recognizes valid words in the language

• Not all combinations of valid words form valid phrases in
a language

• Syntactically correct: val a = 1

• Syntactically incorrect: val val val

• We must define the structure of phrases

• A syntactical grammar achieves that

Parsing

• Regular expressions are not powerful enough

Parsing

• Regular expressions are not powerful enough

• REs can't recognize nested structures

Parsing

• Regular expressions are not powerful enough

• REs can't recognize nested structures

• Because they use a finite amount of memory

Parsing

• Regular expressions are not powerful enough

• REs can't recognize nested structures

• Because they use a finite amount of memory

• Nesting needs a stack to remember the upper
structures you're traversing

Parsing

• Regular expressions are not powerful enough

• REs can't recognize nested structures

• Because they use a finite amount of memory

• Nesting needs a stack to remember the upper
structures you're traversing

• Syntactical grammars express nesting using
recursion

Parsing

It's not weird-looking Unicode characters

that make regexes unsuitable for parsing.

Syntactical Grammar

µML — Syntactical Grammar

expr = int
 | var
 | bool
 | (expr)
 | fn var => expr
 | if expr then expr else expr
 | let val var = expr in expr end
 | expr oper expr
 | expr expr

oper = + | -
bool = true | false

expr = int
 | var
 | bool
 | (expr)
 | fn var => expr
 | if expr then expr else expr
 | let val var = expr in expr end
 | expr oper expr
 | expr expr

oper = + | -
bool = true | false

Here, blue symbols represent tokens coming from the lexer, not keywords.

µML — Syntactical Grammar

expr = int
 | var
 | bool
 | (expr)
 | fn var => expr
 | if expr then expr else expr
 | let val var = expr in expr end
 | expr oper expr
 | expr expr

oper = + | -
bool = true | false

Here, blue symbols represent tokens coming from the lexer, not keywords.

µML — Syntactical Grammar

expr = int
 | var
 | bool
 | (expr)
 | fn var => expr
 | if expr then expr else expr
 | let val var = expr in expr end
 | expr oper expr
 | expr expr

bool = true | false
oper = + | -

Here, blue symbols represent tokens coming from the lexer, not keywords.

µML — Syntactical Grammar

expr = int
 | var
 | bool
 | (expr)
 | fn var => expr
 | if expr then expr else expr
 | let val var = expr in expr end
 | expr oper expr
 | expr expr

bool = true | false
oper = + | -

Here, blue symbols represent tokens coming from the lexer, not keywords.

µML — Syntactical Grammar

expr = int
 | var
 | bool
 | (expr)
 | fn var => expr
 | if expr then expr else expr
 | let val var = expr in expr end
 | expr oper expr
 | expr expr

bool = true | false
oper = + | -

Here, blue symbols represent tokens coming from the lexer, not keywords.

µML — Syntactical Grammar

expr = int
 | var
 | bool
 | (expr)
 | fn var => expr
 | if expr then expr else expr
 | let val var = expr in expr end
 | expr oper expr
 | expr expr

bool = true | false
oper = + | -

Here, blue symbols represent tokens coming from the lexer, not keywords.

µML — Syntactical Grammar

expr = int
 | var
 | bool
 | (expr)
 | fn var => expr
 | if expr then expr else expr
 | let val var = expr in expr end
 | expr oper expr
 | expr expr

bool = true | false
oper = + | -

Here, blue symbols represent tokens coming from the lexer, not keywords.

µML — Syntactical Grammar

expr = int
 | var
 | bool
 | (expr)
 | fn var => expr
 | if expr then expr else expr
 | let val var = expr in expr end
 | expr oper expr
 | expr expr

bool = true | false
oper = + | -

Here, blue symbols represent tokens coming from the lexer, not keywords.

µML — Syntactical Grammar

expr = int
 | var
 | bool
 | (expr)
 | fn var => expr
 | if expr then expr else expr
 | let val var = expr in expr end
 | expr oper expr
 | expr expr

bool = true | false
oper = + | -

Here, blue symbols represent tokens coming from the lexer, not keywords.

µML — Syntactical Grammar

expr = int
 | var
 | bool
 | (expr)
 | fn var => expr
 | if expr then expr else expr
 | let val var = expr in expr end
 | expr oper expr
 | expr expr

bool = true | false
oper = + | -

Here, blue symbols represent tokens coming from the lexer, not keywords.

µML — Syntactical Grammar

expr = int
 | var
 | bool
 | (expr)
 | fn var => expr
 | if expr then expr else expr
 | let val var = expr in expr end
 | expr oper expr
 | expr expr

bool = true | false
oper = + | -

Here, blue symbols represent tokens coming from the lexer, not keywords.

µML — Syntactical Grammar

• Function application has higher precedence over infix
expressions in ML

Introducing Precedence

• Function application has higher precedence over infix
expressions in ML

• double 1 + 2 = (double 1) + 2

Introducing Precedence

• Function application has higher precedence over infix
expressions in ML

• double 1 + 2 = (double 1) + 2

• double 1 + 2 ≠ double (1 + 2)

Introducing Precedence

• Function application has higher precedence over infix
expressions in ML

• double 1 + 2 = (double 1) + 2

• double 1 + 2 ≠ double (1 + 2)

• A rule's alternatives don't encode precedence

Introducing Precedence

• Function application has higher precedence over infix
expressions in ML

• double 1 + 2 = (double 1) + 2

• double 1 + 2 ≠ double (1 + 2)

• A rule's alternatives don't encode precedence

• Grammars convey this by chaining rules in order of precedence

Introducing Precedence

• Function application has higher precedence over infix
expressions in ML

• double 1 + 2 = (double 1) + 2

• double 1 + 2 ≠ double (1 + 2)

• A rule's alternatives don't encode precedence

• Grammars convey this by chaining rules in order of precedence

• Doesn't scale with many infix operators

Introducing Precedence

• Function application has higher precedence over infix
expressions in ML

• double 1 + 2 = (double 1) + 2

• double 1 + 2 ≠ double (1 + 2)

• A rule's alternatives don't encode precedence

• Grammars convey this by chaining rules in order of precedence

• Doesn't scale with many infix operators

• Use a special parser for that, e.g., the Shunting Yard algorithm

Introducing Precedence

Introducing Precedence
expr = int
 | var
 | bool
 | (expr)
 | fn var => expr
 | if expr then expr else expr
 | let val var = expr in expr end
 | expr oper expr
 | expr expr

bool = true | false
oper = + | -

Introducing Precedence
expr = infix
 | fn var => expr
 | if expr then expr else expr
!
infix = app
 | infix oper infix
!
app = atomic
 | app atomic
!
atomic = int
 | var
 | bool
 | (expr)
 | let val var = expr in expr end

bool = true | false
oper = + | -

Introducing Precedence
expr = infix
 | fn var => expr
 | if expr then expr else expr
!
infix = app
 | infix oper infix
!
app = atomic
 | app atomic
!
atomic = int
 | var
 | bool
 | (expr)
 | let val var = expr in expr end

bool = true | false
oper = + | -

Introducing Precedence
expr = infix
 | fn var => expr
 | if expr then expr else expr
!
infix = app
 | infix oper infix
!
app = atomic
 | app atomic
!
atomic = int
 | var
 | bool
 | (expr)
 | let val var = expr in expr end

bool = true | false
oper = + | -

Introducing Precedence
expr = infix
 | fn var => expr
 | if expr then expr else expr
!
infix = app
 | infix oper infix
!
app = atomic
 | app atomic
!
atomic = int
 | var
 | bool
 | (expr)
 | let val var = expr in expr end

bool = true | false
oper = + | -

Parsing Strategies

• Two styles:

Parsing Strategies

• Two styles:

• Top-down parsing: builds tree from the root

Parsing Strategies

• Two styles:

• Top-down parsing: builds tree from the root

• Bottom-up parsing: builds tree from the leaves

Parsing Strategies

• Two styles:

• Top-down parsing: builds tree from the root

• Bottom-up parsing: builds tree from the leaves

• Top-down is easy to write by hand

Parsing Strategies

• Two styles:

• Top-down parsing: builds tree from the root

• Bottom-up parsing: builds tree from the leaves

• Top-down is easy to write by hand

• Bottom-up is not, but it's used by generators

Parsing Strategies

• Two styles:

• Top-down parsing: builds tree from the root

• Bottom-up parsing: builds tree from the leaves

• Top-down is easy to write by hand

• Bottom-up is not, but it's used by generators

• Parser generators: YACC, ANTLR, Bison, etc.

Parsing Strategies

• The simplest known parsing strategy; amenable to hand-coding

Recursive Descent Parser

• The simplest known parsing strategy; amenable to hand-coding

• Builds the tree top to bottom, from root to leaves, hence Descent

Recursive Descent Parser

• The simplest known parsing strategy; amenable to hand-coding

• Builds the tree top to bottom, from root to leaves, hence Descent

• Parallels the structure of the grammar

Recursive Descent Parser

• The simplest known parsing strategy; amenable to hand-coding

• Builds the tree top to bottom, from root to leaves, hence Descent

• Parallels the structure of the grammar

• Main idea: each grammar production becomes a function

Recursive Descent Parser

• The simplest known parsing strategy; amenable to hand-coding

• Builds the tree top to bottom, from root to leaves, hence Descent

• Parallels the structure of the grammar

• Main idea: each grammar production becomes a function

• Recursion in the grammar translates to recursion in the code, hence
Recursive

Recursive Descent Parser

• The simplest known parsing strategy; amenable to hand-coding

• Builds the tree top to bottom, from root to leaves, hence Descent

• Parallels the structure of the grammar

• Main idea: each grammar production becomes a function

• Recursion in the grammar translates to recursion in the code, hence
Recursive

• Recursion is the main difference compared to regexes; it needs a stack

Recursive Descent Parser

• The simplest known parsing strategy; amenable to hand-coding

• Builds the tree top to bottom, from root to leaves, hence Descent

• Parallels the structure of the grammar

• Main idea: each grammar production becomes a function

• Recursion in the grammar translates to recursion in the code, hence
Recursive

• Recursion is the main difference compared to regexes; it needs a stack

• Very popular, e.g., Clang uses it for C/C++/Obj-C

Recursive Descent Parser

• The simplest known parsing strategy; amenable to hand-coding

• Builds the tree top to bottom, from root to leaves, hence Descent

• Parallels the structure of the grammar

• Main idea: each grammar production becomes a function

• Recursion in the grammar translates to recursion in the code, hence
Recursive

• Recursion is the main difference compared to regexes; it needs a stack

• Very popular, e.g., Clang uses it for C/C++/Obj-C

• Parser combinators are an abstraction over this idea

Recursive Descent Parser

Code

• The current grammar has a problem

Removing Left-Recursion

• The current grammar has a problem

• But, it's only a problem for our current parsing strategy;
others can easily cope with it

Removing Left-Recursion

• The current grammar has a problem

• But, it's only a problem for our current parsing strategy;
others can easily cope with it

• The problem is that some rules are left-recursive, i.e., the
rule itself appears as the first symbol on the left

Removing Left-Recursion

• The current grammar has a problem

• But, it's only a problem for our current parsing strategy;
others can easily cope with it

• The problem is that some rules are left-recursive, i.e., the
rule itself appears as the first symbol on the left

• This is problematic for a recursive descent parser because
the structure of function calls follow the structure of rule
definitions

Removing Left-Recursion

• The current grammar has a problem

• But, it's only a problem for our current parsing strategy;
others can easily cope with it

• The problem is that some rules are left-recursive, i.e., the
rule itself appears as the first symbol on the left

• This is problematic for a recursive descent parser because
the structure of function calls follow the structure of rule
definitions

• That means infinite recursion in the parser, which isn't good

Removing Left-Recursion

expr = infix
 | fn var => expr
 | if expr then expr else expr
!
infix = app
 | infix oper infix
!
app = atomic
 | app atomic
!
atomic = int
 | var
 | bool
 | (expr)
 | let val var = expr in expr end

bool = true | false
oper = + | -

Left-Recursive Grammar

expr = infix
 | fn var => expr
 | if expr then expr else expr
!
infix = app
 | infix oper infix
!
app = atomic
 | app atomic
!
atomic = int
 | var
 | bool
 | (expr)
 | let val var = expr in expr end

bool = true | false
oper = + | -

Left-Recursive Grammar

expr = infix
 | fn var => expr
 | if expr then expr else expr
!
infix = app
 | infix oper infix
!
app = atomic
 | app atomic

Left-Recursive Grammar

expr = infix
 | fn var => expr
 | if expr then expr else expr
!
infix = app
 | infix oper infix
!
app = atomic
 | atomic atomic
 | atomic atomic atomic
 | atomic atomic atomic atomic
 ...

Left-Recursive Grammar

expr = infix
 | fn var => expr
 | if expr then expr else expr
!
infix = app
 | infix oper infix
!
app = atomic
 | atomic atomic
 | atomic (atomic atomic)
 | atomic (atomic (atomic atomic))
 ...

Left-Recursive Grammar

expr = infix
 | fn var => expr
 | if expr then expr else expr
!
infix = app
 | infix oper infix
!
app = atomic { app }

Left-Recursive Grammar

Removing Left-Recursion
expr = infix
 | fn var => expr
 | if expr then expr else expr
!
infix = app
 | infix oper infix
!
app = atomic { app }
!
atomic = int
 | var
 | bool
 | (expr)
 | let val var = expr in expr end

bool = true | false
oper = + | -

Removing Left-Recursion
expr = infix
 | fn var => expr
 | if expr then expr else expr
!
infix = app
 | infix oper infix

Removing Left-Recursion
expr = infix
 | fn var => expr
 | if expr then expr else expr
!
infix = app
 | app oper infix

Removing Left-Recursion
expr = infix
 | fn var => expr
 | if expr then expr else expr
!
infix = app
 | app oper infix
 | app oper app oper infix

Removing Left-Recursion
expr = infix
 | fn var => expr
 | if expr then expr else expr
!
infix = app
 | app oper infix
 | app oper app oper infix
 | app oper app oper app oper infix

Removing Left-Recursion
expr = infix
 | fn var => expr
 | if expr then expr else expr
!
infix = app
 | app oper infix
 | app oper app oper infix
 | app oper app oper app oper infix
 ...

Removing Left-Recursion
expr = infix
 | fn var => expr
 | if expr then expr else expr
!
infix = app
 | app (oper infix)
 | app (oper app (oper infix))
 | app (oper app (oper app (oper infix)))
 ...

Removing Left-Recursion
expr = infix
 | fn var => expr
 | if expr then expr else expr
!
infix = app { oper infix }

Removing Left-Recursion
expr = infix
 | fn var => expr
 | if expr then expr else expr
!
infix = app { oper infix }
!
app = atomic { app }
!
12 14 13
(12 14) 13
!
atomic = int
 | var
 | bool
 | (expr)
 | let val var = expr in expr end

bool = true | false
oper = + | -

github.com / igstan / itake-2016

https://github.com/igstan/itake-2016

• Write a lexer for JSON

• Write a recursive descent parser for JSON

• It's way easier than today's vehicle language

• I promise!

• Specification: json.org

Homework

http://json.org/

Thank You!

Questions!

