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A Taste of Standard ML
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- datatype 'a option
- NONE
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datatype 'a option = NONE | SOME of 'a

- fun map f option

case option of
NONE => NONE

| SOME a => SOME (f a);
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- use "option.sml";
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val a = SOME 1 : 1int Option.option

- Option.map (fn a => a + 1) a;
val 1t = SOME 2 : 1nt Option.option
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struct

val empty = []

fun add set elem =
case set of
[] => [elem]

| head :: tail =>

case .compare (head, elem) of
LESS => head :: (add tail elem)
| EQUAL => set
| GREATER => elem :: set
end



| functor
| O —

—/
I

ListSet(
' e
val empty

[ ]

fun add set elem =
case set of
[] => [elem]

| head :: tail =>

case .compare (head, elem) of
LESS => head :: (add tail elem)
| EQUAL => set
| GREATER => elem :: set
end



In Standard ML, a functor is a
module-level function that takes a
module as argument and produces

a module as a result.



Note: There's no relationship
between an SML functor and the
Functor type-class as defined by

the cats or scalaz libraries.
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signature ORD =
S1g
type t
val compare : t *» t -> order
end



A signature can be seen as
the type of a module.

't specifies the types and
values that a module must
define.
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structure IntOrd =
struct
type t = Int.1int
val compare = Int.compare
end

structure IntListSet = ListSet(IntOrd)

structure StringlListSet ListSet(struct
type t = String.string
val compare = String.compare

end)
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Similarities

Standard ML Scala
structure § object
signature trait

functor class / def
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A They're not. One cannot, save for reflection, pass classes as
arguments to classes or produce classes from classes.
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In Scala, we can store objects in variables, pass them to
Q functions or return them from functions. Does SML allow this
with structures and functors?

No. In Standard ML, modules are not first-class. Values and
A modules form two different, separate languages — the so-
called core and module languages.
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Q Why aren't modules first-class values in Standard ML7

A Let's see...




trait Ord {

type T

def compare(a: T, b: T): Int
}



object IntOrd extends Ord {

type T = Int

def compare(a: T, b: T): Int = a
}



trait Set {
type T
type K

def empty: T
def add(set: T, key: K): T
}



class ListSet(val ord: Ord) extends Set {
type K = ord.T
type T = Listlord.T]

def empty: T = List.empty
def add(set: T, key: K): T = 2?7
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object TwitterClient {
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object TwitterClient f{

def followers(username: String):
Set#T
= {

val userSet new ListSet(UserOrd)

val users: userSet.T = UserSet.empty

// add users and return them
users



| imitations in SML

Q Why aren't modules first-class values in Standard ML7




| imitations in SML

Q Why aren't modules first-class values in Standard ML7

Having types as components of a signature seems to require
A the notion of dependent types if the language were to support
first-class modules. Scala has path-dependent types.
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Other Differences

SML's modules are not (mutually) recursive, while
Scala's objects and classes are.

Because objects, traits and classes are values,
they're also types in Scala.

Objects come with a concept of this (open
recursion), SML modules do not.

SML modules allow some sort of inheritance, but
not overriding, as there's no this.



Dependency Injection



Dependency Injection



Dependency Injection

* Functor params look a lot like constructor injection.



Dependency Injection

* Functor params look a lot like constructor injection.

 The Reader monad is usually advocated by FP
people for doing "functional® DI.



Dependency Injection

* Functor params look a lot like constructor injection.

 The Reader monad is usually advocated by FP
people for doing "functional® DI.

 But Reader only injects values, not types.



Dependency Injection

Functor params look a lot like constructor injection.

he Reader monad is usually advocated by FP
people for doing "functional® DI.

But Reader only injects values, not types.

A tunctor-like approach, I.e., constructor injection,
s still useful.



Dependency Injection

Functor params look a lot like constructor injection.

he Reader monad is usually advocated by FP
people for doing "functional® DI.

But Reader only injects values, not types.

A tunctor-like approach, I.e., constructor injection,
s still useful.

Scala alternative: implicit params.
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Dependency Injection

* We should distinguish between:

» static dependencies: dependencies are known
at compile-time. Employ constructor injection or
type-classes (coherent implicit params).

 dynamic dependencies: dependencies are
known at runtime. Employ constructor injection,
implicit params, Reader monad.



Scala's object system can and
should be seen as a first-class
module system.



Thank You!



Questions!



