Modularity a la ML

Ionut G. Stan — igstan.ro — ionut@eloquentix.com

http://igstan.ro
mailto:ionut@eloquentix.com

About Me

O

v

Software Developer at eloquentix

Worked with Scala for the past 5 years
FP, programming languages, compilers

Mostly-tech blog at igstan.ro

http://igstan.ro/

Why ML?

modern
compiler
IMmplementation
in C

andrew w. appel

Why ML

modern
compiler
implementation
in Java

andrew w. appel

modern
compiler
iImplementation
in ML

andrew w. appel

modern
compiler
IMmplementation
in C

andrew w. appel

mMoc
comyj
iImplementa

T

andrew w. app

modern
compiler
Implementation
in ML

andrew w. appel

A Taste of Standard ML

datatype option =

datatype 'a option =

datatype 'a option =
NONE

datatype 'a option =
NONE
| SOME of 'a

datatype 'a option =
NONE
| SOME of 'a

fun map

datatype 'a option =
NONE
| SOME of 'a

fun map f

datatype 'a option =
NONE
| SOME of 'a

fun map f option =

datatype 'a option =
NONE
| SOME of 'a

fun map f option =
case option of

datatype 'a option =
NONE
| SOME of 'a

fun map f option =
case option of
NONE => NONE

datatype 'a option =
NONE
| SOME of 'a

fun map f option =
case option of
NONE => NONE
| SOME a => SOME (f a)

$ sml

$ sml

- datatype 'a option =
NONE

. | SOME of 'a;

$ sml

- datatype 'a option =

NONE

.. | SOME of 'a;

datatype 'a option = NONE | SOME of 'a

$ sml

- datatype 'a option
- NONE

.. | SOME of 'a;
datatype 'a option = NONE | SOME of 'a

- fun map f option
case option of
NONE => NONE

| SOME a => SOME (f a);

$ sml

- datatype 'a option
- NONE

.. | SOME of 'a;
datatype 'a option = NONE | SOME of 'a

- fun map f option
case option of
NONE => NONE

| SOME a => SOME (f a);
val map = fn : ('a -> 'b) -> 'a option -> 'b option

$ sml

- datatype 'a option
- NONE

.. | SOME of 'a;
datatype 'a option = NONE | SOME of 'a

- fun map f option
case option of
NONE => NONE

| SOME a => SOME (f a);
val map = fn : ('a -> 'b) -> 'a option -> 'b option

- val a = SOME 1;

$ sml

- datatype 'a option
- NONE

.. | SOME of 'a;
datatype 'a option = NONE | SOME of 'a

- fun map f option
case option of
NONE => NONE
| SOME a => SOME (f a);
val map = fn : ('a -> 'b) -> 'a option -> 'b option
- val a = SOME 1;
val a = SOME 1 : 1nt option

$ sml

- datatype 'a option
- NONE

.. | SOME of 'a;
datatype 'a option = NONE | SOME of 'a

- fun map f option
case option of
NONE => NONE
| SOME a => SOME (f a);
val map = fn : ('a -> 'b) -> 'a option -> 'b option
- val a = SOME 1;
val a = SOME 1 : 1nt option

- map (fn a => a + 1) a;

$ sml

- datatype 'a option
- NONE

. | SOME of 'a;

datatype 'a option = NONE | SOME of 'a

- fun map f option

case option of
NONE => NONE

| SOME a => SOME (f a);

val map = fn : ('a -> 'b) ->

- val a = SOME 1;

val a = SOME 1 : 1nt option

- map (fn a => a + 1) a;

val 1t = SOME 2 : 1nt option

'a option -> 'b option

Moaules

datatype 'a option =
NONE
| SOME of 'a

fun map f option =
case option of
NONE => NONE
| SOME a => SOME (f a)

struct
datatype 'a option =
NONE
| SOME of 'a

fun map f option =
case option of
NONE => NONE
| SOME a => SOME (f a)
end

'a option =

‘ SOME of 'a

fun map f option =
case option of
NONE => NONE
| SOME a => SOME (f a)

structure Option =
struct
datatype 'a option =
NONE
| SOME of 'a

fun map f option =
case option of
NONE => NONE
| SOME a => SOME (f a)
end

datatype 'a option =
NONE
| SOME of 'a

fun map f option =
case option of
NONE => NONE
| SOME a => SOME (f a)
end

$ sml
- use "option.sml";

$ sml
- use "option.sml";

- val a = Option.SOME 1;

$ sml
- use "option.sml";

- val a = Option.SOME 1;
val a = SOME 1 : 1int Option.option

$ sml
- use "option.sml";

- val a = Option.SOME 1;
val a = SOME 1 : 1int Option.option

- Option.map (fn a => a + 1) a;

$ sml

- use "option.sml";

- val a = Option.SOME 1;

val a = SOME 1 : 1int Option.option

- Option.map (fn a => a + 1) a;
val 1t = SOME 2 : 1nt Option.option

Functors

structure IntListSet
struct

end

structure IntListSet
struct
val empty = []

end

structure IntListSet
struct
val empty = []

fun add set elem

end

structure IntListSet
struct
val empty = []

fun add set elem
case set of

end

structure IntListSet
struct
val empty = []

fun add set elem
case set of

[] => [elem]

end

structure IntListSet
struct
val empty = []

fun add set elem
case set of

[] => [elem]
| head :: tail =>

end

structure IntListSet
struct
val empty = []

fun add set elem
case set of
[] => [elem]
| head :: tail =>
case Int.compare (head, elem) of

end

datatype order = LESS | EQUAL | GREATER

structure IntListSet
struct
val empty = []

fun add set elem
case set of
[] => [elem]
| head :: tail =>
case Int.compare (head, elem) of
LESS =>
| EQUAL =>
| GREATER =>
end

structure IntListSet
struct
val empty = []

fun add set elem
case set of
[] => [elem]
| head :: tail =>
case Int.compare (head, elem) of
LESS => head :: (add tail elem)
| EQUAL =>
| GREATER =>
end

structure IntListSet
struct
val empty = []

fun add set elem
case set of
[] => [elem]
| head :: tail =>
case Int.compare (head, elem) of
LESS => head :: (add tail elem)
| EQUAL => set
| GREATER =>
end

structure IntListSet
struct
val empty = []

fun add set elem
case set of
[] => [elem]
| head :: tail =>
case Int.compare (head, elem) of
LESS => head :: (add tail elem)
| EQUAL => set
| GREATER => elem :: set
end

structure StringlListSet
struct
val empty = []

fun add set elem =
case set of
[] => [elem]

| head :: tail =>

case String.compare (head, elem) of
LESS => head :: (add tail elem)
| EQUAL => set
| GREATER => elem :: set
end

structure StringlListSet
struct
val empty = []

fun add set elem =
case set of
[] => [elem]

| head :: tail =>

case String.compare (head, elem) of
LESS => head :: (add tail elem)
| EQUAL => set
| GREATER => elem :: set
end

—/
I

functor ListSet(
struct

val empty = []

fun add set elem =
case set of
[] => [elem]

| head :: tail =>

case .compare (head, elem) of
LESS => head :: (add tail elem)
| EQUAL => set
| GREATER => elem :: set
end

| functor
| O —

—/
I

ListSet(
' e
val empty

[]

fun add set elem =
case set of
[] => [elem]

| head :: tail =>

case .compare (head, elem) of
LESS => head :: (add tail elem)
| EQUAL => set
| GREATER => elem :: set
end

In Standard ML, a functor is a
module-level function that takes a
module as argument and produces

a module as a result.

Note: There's no relationship
between an SML functor and the
Functor type-class as defined by

the cats or scalaz libraries.

—/
I

functor ListSet(
struct

val empty = []

fun add set elem =
case set of
[] => [elem]

| head :: tail =>

case .compare (head, elem) of
LESS => head :: (add tail elem)
| EQUAL => set
| GREATER => elem :: set
end

—/
I

functor ListSet(Elem
struct
val empty = []

fun add set elem =
case set of
[] => [elem]

| head :: tail =>

case Elem.compare (head, elem) of
LESS => head :: (add tail elem)
| EQUAL => set
| GREATER => elem :: set
end

Signatures

—/
I

functor ListSet(Elem
struct
val empty = []

fun add set elem =
case set of
[] => [elem]

| head :: tail =>

case Elem.compare (head, elem) of
LESS => head :: (add tail elem)
| EQUAL => set
| GREATER => elem :: set
end

functor ListSet(Elem : ORD) =
struct
val empty = []

fun add set elem =
case set of
[] => [elem]

| head :: tail =>

case Elem.compare (head, elem) of
LESS => head :: (add tail elem)
| EQUAL => set
| GREATER => elem :: set
end

functor ListSet(Elem : ORD) =
struct
val empty = []

fun add set elem =
case set of
[] => [elem]

| head :: tail =>

case Elem.compare (head, elem) of
LESS => head :: (add tail elem)
| EQUAL => set
| GREATER => elem :: set
end

functor ListSet(Elem : ORD) =
struct
val empty = []

fun add set elem =
case set of
[] => [elem]

| head :: tail =>

case Elem.compare (head, elem) of
LESS => head :: (add tail elem)
| EQUAL => set
| GREATER => elem :: set
end

val compare : t *» t -> order

type t
val compare : t *» t -> order

S1g

type t

val compare : t *» t -> order
end

signature ORD =
S1g
type t
val compare : t *» t -> order
end

A signature can be seen as
the type of a module.

't specifies the types and
values that a module must
define.

functor ListSet(Elem : ORD) =
struct
val empty = []

fun add set elem =
case set of
[] => [elem]

| head :: tail =>

case Elem.compare (head, elem) of
LESS => head :: (add tail elem)
| EQUAL => set
| GREATER => elem :: set
end

functor ListSet(Elem : ORD)
struct
val empty = []

fun add set elem =
case set of
[] => [elem]
| head :: tail =>

: SET

case Elem.compare (head, elem) of
LESS => head :: (add tail elem)

| EQUAL => set

| GREATER => elem ::

end

set

functor ListSet(Elem : ORD)
struct
val empty = []

fun add set elem =
case set of
[] => [elem]
| head :: tail =>

: SET

case Elem.compare (head, elem) of
LESS => head :: (add tail elem)

| EQUAL => set

| GREATER => elem ::

end

set

signature SET =
S1g

end

signature SET
S1g

val empty :

end

T

signature SET

S1g
type t
val empty :

end

T

signature SET
S1g
type t

val empty :

val add :
end

T

T
-2

-2

T

signature SET
S1g
type t
type key

val empty :

val add :
end

T

T
-2

-2

T

signature SET =
S1g
type t
type key
val empty : t
val add : t -> key -> t
end

signature SET =
S1g
type t
type key
val empty : t
val add : t -> key -> t
end

functor ListSet(Elem : ORD) : SET
struct
type ©t = Elem.t list

type key = Elem.t

[]

val empty

fun add set elem =
case set of
[] => [elem]

| head :: tail =>

case Elem.compare (head, elem) of
LESS => head :: (add tail elem)
| EQUAL => set
| GREATER => elem :: set
end

functor ListSet(Elem : ORD) : SET
struct
type t = Elem.t list

type key = Elem.t

[]

val empty

fun add set elem =
case set of
[] => [elem]

| head :: tail =>

case Elem.compare (head, elem) of
LESS => head :: (add tail elem)
| EQUAL => set
| GREATER => elem :: set
end

structure IntListSet = ListSet(IntOrd)

structure IntOrd =
struct
type t = Int.1int
val compare = Int.compare
end

structure IntListSet = ListSet(IntOrd)

structure IntOrd =
struct
type t = Int.1int
val compare = Int.compare
end

structure IntListSet = ListSet(IntOrd)

structure StringlListSet ListSet(struct
type t = String.string
val compare = String.compare

end)

Similarities with Scala”

Similarities

Standard ML Scala

Similarities

Standard ML Scala

structure § object

Similarities

Standard ML Scala

structure § object

Similarities

Standard ML Scala
structure § object
signature trait

functor class / def

Differences & Limitations

| imitations in SML

| imitations in SML

Q It a functor is like a function, can we pass functors to functors,
just like we can pass functions to functions”

| imitations in SML

Q It a functor is like a function, can we pass functors to functors,
just like we can pass functions to functions”

A No. Standard ML does not have higher-order functors.
OCaml and some other ML dialects have it, though.

| imitations in SML

| imitations in SML

Q So we can't return functors from functors, either?

| imitations in SML

Q So we can't return functors from functors, either?

A No, we cannot in Standard ML.

L Imitations In Scala

L Imitations In Scala

Q It Scala classes are the equivalent of SML functors, are they
higher-order or not?

L Imitations In Scala

Q It Scala classes are the equivalent of SML functors, are they
higher-order or not?

A They're not. One cannot, save for reflection, pass classes as
arguments to classes or produce classes from classes.

| imitations in SML

| imitations in SML

In Scala, we can store objects in variables, pass them to
Q functions or return them from functions. Does SML allow this
with structures and functors?

| imitations in SML

In Scala, we can store objects in variables, pass them to
Q functions or return them from functions. Does SML allow this
with structures and functors?

No. In Standard ML, modules are not first-class. Values and
A modules form two different, separate languages — the so-
called core and module languages.

| imitations in SML

| imitations in SML

Q Why aren't modules first-class values in Standard ML7

| imitations in SML

Q Why aren't modules first-class values in Standard ML7

A Let's see...

trait Ord {

type T

def compare(a: T, b: T): Int
}

object IntOrd extends Ord {

type T = Int

def compare(a: T, b: T): Int = a
}

trait Set {
type T
type K

def empty: T
def add(set: T, key: K): T
}

class ListSet(val ord: Ord) extends Set {
type K = ord.T
type T = Listlord.T]

def empty: T = List.empty
def add(set: T, key: K): T = 2?7

object TwitterClient {

object TwitterClient {
object UserSet extends ListSet(UserOrd)

object TwitterClient f{
object UserSet extends ListSet(UserOrd)

def followers(username: String) = {

object TwitterClient f{
object UserSet extends ListSet(UserOrd)

def followers(username: String) = {

val users = UserSet.empty

object TwitterClient f{
object UserSet extends ListSet(UserOrd)

def followers(username: String) = {

val users = UserSet.empty

// add users and return them
users

}
}

object TwitterClient f{

def followers(username: String) = {
object UserSet extends ListSet(UserOrd)

val users = UserSet.empty

// add users and return them
users

}
}

object TwitterClient f{

def followers(username: String) = {
val userSet = new ListSet(UserOrd)

val users = UserSet.empty

// add users and return them
users

}
}

object TwitterClient f{

def followers(username: String) = {
val userSet = new ListSet(UserOrd)

val users: = UserSet.empty

// add users and return them
users

}
}

object TwitterClient f{

def followers(username: String) = {
val userSet = new ListSet(UserOrd)

val users: userSet.T = UserSet.empty

// add users and return them
users

}
}

object TwitterClient f{

def followers(username: String):

= 1

val userSet new ListSet(UserOrd)

val users: userSet.T = UserSet.empty

// add users and return them
users

object TwitterClient f{

def followers(username: String):
List[userSet.ord.T] forSome { val userSet: ListSet }

= 1

val userSet new ListSet(UserOrd)

val users: userSet.T = UserSet.empty

// add users and return them
users

object TwitterClient {
import scala.language.existentials

def followers(username: String):
List[userSet.ord.T] forSome { val userSet: ListSet }
= {

val userSet new ListSet(UserOrd)

val users: userSet.T = UserSet.empty

// add users and return them
users

object TwitterClient f{
import scala.language.existentials

def followers(username: String):
userSet.T forSome { val userSet: Set }
= {

val userSet new ListSet(UserOrd)

val users: userSet.T = UserSet.empty

// add users and return them
users

object TwitterClient f{

def followers(username: String):
Set#T
= {

val userSet new ListSet(UserOrd)

val users: userSet.T = UserSet.empty

// add users and return them
users

| imitations in SML

Q Why aren't modules first-class values in Standard ML7

| imitations in SML

Q Why aren't modules first-class values in Standard ML7

Having types as components of a signature seems to require
A the notion of dependent types if the language were to support
first-class modules. Scala has path-dependent types.

Other Differences

Other Differences

« SML's modules are not (mutually) recursive, while
Scala's objects and classes are.

Other Differences

« SML's modules are not (mutually) recursive, while
Scala's objects and classes are.

* Because objects, traits and classes are values,
they're also types in Scala.

Other Differences

« SML's modules are not (mutually) recursive, while
Scala's objects and classes are.

* Because objects, traits and classes are values,
they're also types in Scala.

* Objects come with a concept of this (open
recursion), SML modules do not.

Other Differences

SML's modules are not (mutually) recursive, while
Scala's objects and classes are.

Because objects, traits and classes are values,
they're also types in Scala.

Objects come with a concept of this (open
recursion), SML modules do not.

SML modules allow some sort of inheritance, but
not overriding, as there's no this.

Dependency Injection

Dependency Injection

Dependency Injection

* Functor params look a lot like constructor injection.

Dependency Injection

* Functor params look a lot like constructor injection.

 The Reader monad is usually advocated by FP
people for doing "functional® DI.

Dependency Injection

* Functor params look a lot like constructor injection.

 The Reader monad is usually advocated by FP
people for doing "functional® DI.

 But Reader only injects values, not types.

Dependency Injection

Functor params look a lot like constructor injection.

he Reader monad is usually advocated by FP
people for doing "functional® DI.

But Reader only injects values, not types.

A tunctor-like approach, I.e., constructor injection,
s still useful.

Dependency Injection

Functor params look a lot like constructor injection.

he Reader monad is usually advocated by FP
people for doing "functional® DI.

But Reader only injects values, not types.

A tunctor-like approach, I.e., constructor injection,
s still useful.

Scala alternative: implicit params.

Dependency Injection

* We should distinguish between:

Dependency Injection

* We should distinguish between:

» static dependencies: dependencies are known
at compile-time. Employ constructor injection or
type-classes (coherent implicit params).

Dependency Injection

* We should distinguish between:

» static dependencies: dependencies are known
at compile-time. Employ constructor injection or
type-classes (coherent implicit params).

 dynamic dependencies: dependencies are
known at runtime. Employ constructor injection,
implicit params, Reader monad.

Scala's object system can and
should be seen as a first-class
module system.

Thank You!

Questions!

